
1

December 4, 2003© 2003, Ronald J. Williams

Reinforcement Learning
and Markov Decision

Processes
Ronald J. Williams
CSG120, Fall 2003

Contains a small number of slides adapted from two related Andrew Moore
tutorials found at http://www.cs.cmu.edu/~awm/tutorials

© 2003, Ronald J. Williams Reinforcement Learning: Slide 2

What is reinforcement learning?
• A reinforcement learning agent

• interacts with its environment

• is goal-seeking

• The term reinforcement learning is used to
characterize tasks having these properties

• A reinforcement learning algorithm is any
algorithm for addressing such tasks

© 2003, Ronald J. Williams Reinforcement Learning: Slide 3

Historical background
• Original motivation: animal learning
• Early emphasis: neural net implementations

and heuristic properties
• Now appreciated that it has close ties with

• optimal control
• dynamic programming
• AI state-space search

• Best formalized as a set of techniques to
handle Markov Decision Processes

© 2003, Ronald J. Williams Reinforcement Learning: Slide 4

a(0) a(1) a(2)
s(0) s(1) s(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where 0 ≤ γ ≤ 1.

Reinforcement learning task

Agent

Environment

Sensation Reward Action

γ = discount factor

© 2003, Ronald J. Williams Reinforcement Learning: Slide 5

a(0) a(1) a(2)
s(0) s(1) s(2) . . .

r(0) r(1) r(2)

Goal: Learn to choose actions that maximize the cumulative reward

r(0) + γ r(1) + γ 2 r(2) + . . .

where 0 ≤ γ ≤ 1.

Reinforcement learning task

Agent

Environment

Sensation Reward Action

γ = discount factor

Here we assume sensation = state
(“observable state”); otherwise, have more
difficult partially observable state problem.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 6

Markov Decision Process
• Finite set of states S
• Finite set of actions A *
• Immediate reward function

• Transition (next-state) function

• More generally, R and T are treated as stochastic
• We’ll stick to the above notation for simplicity
• In general case, treat the immediate rewards and next

states as random variables, take expectations, etc.
* The theory easily allows for the possibility that there are different sets of actions

available at each state. For simplicity we use one set for all states.

Reals: →× ASR

SAST →×:

2

© 2003, Ronald J. Williams Reinforcement Learning: Slide 7

Markov Decision Process
• If no rewards and only one action, this is

just a Markov chain
• Sometimes also called a Controlled Markov

Chain
• Overall objective is to determine a policy

such that some measure of cumulative
reward is optimized

AS →:π

© 2003, Ronald J. Williams Reinforcement Learning: Slide 8

What’s a policy?

a3s4

a1s3

a7s2

a3s1

Then a good action isIf agent is in this state

.

Note: To be more precise, this is called a stationary policy because it depends only
on the state. The policy might depend, say, on the time step as well. Such
policies are sometimes useful; they’re called nonstationary policies.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 9

A Markov Decision Process
You run a
startup
company.

In every
state you
must
choose
between
Saving
money or
Advertising.

γ = 0.9

Poor &
Unknown

+0

Rich &
Unknown

+10

Rich &
Famous

+10

Poor &
Famous

+0

S

AA

S

AA

S

S
3

1

1

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

1/2

Here the reward
shown inside any
state represents the
reward received upon
entering that state.

Illustrates that
the next-state
function really
determines a
probability
distribution over
successor states
in the general
case.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 10

Applications of MDPs
Many important problems are MDPs….

… Robot path planning
… Travel route planning
… Elevator scheduling
… Bank customer retention
… Autonomous aircraft navigation
… Manufacturing processes
… Network switching & routing

And many of these have been successfully handled
using RL methods

© 2003, Ronald J. Williams Reinforcement Learning: Slide 11

From a situated agent’s perspective
• At time step t

• Observe that I’m in state s(t)
• Select my action a(t)
• Observe resulting immediate reward r(t)

• Now time step is t+1
• Observe that I’m in state s(t+1)
• etc.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 12

Cumulative Reward
• Objective: Find a policy

maximizing, for every state s, the return

where
• s(0) = s
• each action a(t) is chosen according to
• each subsequent s(t+1) arises from the transition function

T
• each immediate reward r(t) is determined by the

immediate reward function R
• is a discount factor in [0, 1]

AS →:*π

∑
∞

=0
)(

t

t trγ

*π

γ

3

© 2003, Ronald J. Williams Reinforcement Learning: Slide 13

Technical remarks
• If the next state and/or immediate reward

functions are stochastic, then the r(t) values
are random variables and the return is
defined as the expectation of this sum

• If the MDP has absorbing states, the sum
may actually be finite
• We stick with this infinite sum notation for the

sake of generality
• The discount factor can be taken to be 1 in

absorbing-state MDPs
• The formulation we use is called infinite-horizon

© 2003, Ronald J. Williams Reinforcement Learning: Slide 14

Why the discount factor?
• Models idea that future rewards are not

worth quite as much the longer into the
future they’re received
• used in economic models

• Also models situations where there is a
nonzero fixed probability of termination at
any time

• Makes the math work out nicely
• with bounded rewards, sum guaranteed to be

finite even in infinite-horizon case

© 2003, Ronald J. Williams Reinforcement Learning: Slide 15

Interesting fact
For every MDP there exists an optimal policy.

It’s a policy such that for every possible start
state there is no better option than to follow
the policy.

Can you see why this is true?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 16

Computing an Optimal Policy
Idea One:

Run through all possible policies.
Select the best.

What’s the problem ??

© 2003, Ronald J. Williams Reinforcement Learning: Slide 17

Where’s the learning?
• Standard MDP theory starts with knowledge

of R and T and tries to solve for an optimal
policy
• can be viewed as planning using a known model
• however, can be intractable for various reasons
• even with R and T known, there may be

reasons to use techniques developed in RL
research to compute good policies

• What if R and/or T are not known?
• this is basis of most RL research
• look at this a lot more later

© 2003, Ronald J. Williams Reinforcement Learning: Slide 18

What about directly learning a policy?
• One possibility: Use supervised learning

• Where do training examples come from?
• Need prior expertise
• What if set of actions is different in different states?

(e.g. games)

• Another possibility: Generate and test
• Search the space of policies, evaluating many

candidates
• Genetic algorithms, genetic programming, e.g.
• Policy-gradient techniques
• Upside: can work even in non-MDP situations (e.g.,

POMDPs)
• Downside: the space of policies may be way too big

4

© 2003, Ronald J. Williams Reinforcement Learning: Slide 19

Back to MDP theory ...
• It turns out that

• RL theory
• MDP theory
• AI game-tree search

all agree on the idea that evaluating states is
a useful thing to do.

• A (state) value function V is any function
mapping states to real numbers:

Reals: →SV

© 2003, Ronald J. Williams Reinforcement Learning: Slide 20

State Value Functions
• For any policy , define the state value

function by

where the initial state is s and all
subsequent states, actions, and rewards
arise from the transition, policy, and reward
functions, respectively.

• Define , where is an optimal
policy.

*π

π

∑
∞

=

=
0

)()(
t

t trsV γπ

πV

** πVV =

Reminder: Use expected
values in the
stochastic case.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 21

Return from a policy
• is the return (cumulative reward)

obtained by following policy (as a function
of the start state)

• is the optimal return (i.e., the return
obtained by following an optimal policy)

• Recall that the return is the quantity we
want to maximize

πV
π

*V

It can be shown that an optimal policy maximizes the return from
all starting states. I.e., there is no policy that gives a higher
return than the optimal policy when starting from some states
but not when starting from others.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 22

Bellman equations
For any state s and policy

For any state s,

Extremely important and useful
recurrence relations
Can be used to compute the return from a given policy or
to compute the optimal return (Dynamic Programming)

)))(,(())(,()(ssTVssRsV πγπ ππ +=

π

))},((),({max)(** asTVasRsV
a

γ+=

© 2003, Ronald J. Williams Reinforcement Learning: Slide 23

Bellman equations: general form
For completeness, here are the Bellman equations

for stochastic MDPs:

where now represents and

probability that the next state is s’ given
that action a is taken in state s.

)())(())(,()(sVsPssRsV
s

ss ′+= ∑
′

′
ππ πγπ

)}()(),({max)(** sVaPasRsV
s

ssa
′+= ∑

′
′γ

=′)(aPss

),(asR),|(asrE

© 2003, Ronald J. Williams Reinforcement Learning: Slide 24

From values to policies
• Given any state value function V, define a

policy to be greedy for V if, for all s,

• The right-hand side can be viewed as a
1-step lookahead estimate of the return
from based on the estimated return from
successor states

π
))},((),({maxarg)(asTVasRs

a
γπ +=

π
Yet another reminder: In the general

case, this is a shorthand for the
appropriate expectations as spelled
out in detail on the previous slide.

5

© 2003, Ronald J. Williams Reinforcement Learning: Slide 25

Facts about greedy policies
• An optimal policy is greedy for

• Follows from Bellman equation

• If is not optimal then a greedy policy for
will yield a larger return than

• Not hard to prove
• Basis for policy iteration method

*V

π
ππV

© 2003, Ronald J. Williams Reinforcement Learning: Slide 26

Finding an optimal policy
Value Iteration Method
Choose any initial state value function V0

Repeat for all n ≥ 0
For all s

Until convergence

This converges to and any greedy policy with respect to it
will be an optimal policy

Just a technique for solving the Bellman equations for
(system of |S| nonlinear equations in |S| unknowns)

*V

))},((),({max)(1 asTnVasRasnV γ+←
+

*V

© 2003, Ronald J. Williams Reinforcement Learning: Slide 27

Finding an optimal policy
Policy Iteration Method
Choose any initial policy
Repeat for all n ≥ 0

Compute
Choose greedy with respect to

Until

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1

© 2003, Ronald J. Williams Reinforcement Learning: Slide 28

Finding an optimal policy
Policy Iteration Method
Choose any initial policy
Repeat for all n ≥ 0

Compute
Choose greedy with respect to

Until

Can you prove that this terminates with an optimal policy?

1+nπ

0π

nV π

nV π

nn VV ππ =+1

Policy Evaluation Step

Policy Improvement Step

© 2003, Ronald J. Williams Reinforcement Learning: Slide 29

Evaluating a given policy
• There are at least 2 distinct ways of

computing the return for a given policy
• Solve the corresponding system of linear

equations (the Bellman equation for)
• Use an iterative method analogous to value

iteration but with the update

• First way makes sense from an offline
computational point of view

• Second way relates to online RL

π

πV

)))(,(())(,()(1 ssTnVssRsnV πγπ +←
+

© 2003, Ronald J. Williams Reinforcement Learning: Slide 30

Deterministic MDP to Solve

3 actions at each state:

a1, a2, a3

Numbers on arcs denote
immediate reward
received

3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Find optimal policy when γ = 0.9

6

© 2003, Ronald J. Williams Reinforcement Learning: Slide 31

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

© 2003, Ronald J. Williams Reinforcement Learning: Slide 32

Value Iteration
3

2
2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

Computing a new value for s1
using 1-step lookahead with
previous values:

For action a1 lookahead value is
2 + (.9)(0) = 2

For action a2 lookahead value is
3 + (.9)(0) = 3

For action a3 lookahead value is
2 + (.9)(0) = 2

3}2,3,2max{)(11 ==sV

232

a3a2a1

© 2003, Ronald J. Williams Reinforcement Learning: Slide 33

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Arbitrary initial value function V0

0 0

0 0

4242s4

3131s3

4412s2

3232s1

maxa3a2a1

Lookahead value
along action

© 2003, Ronald J. Williams Reinforcement Learning: Slide 34

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

New value function V1 after one step of value iteration

3 4

3 4

4)(
3)(
4)(
3)(

41

31

21

11

=
=
=
=

sV
sV
sV
sV

Updated
approximation
to V*:

© 2003, Ronald J. Williams Reinforcement Learning: Slide 35

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

Keep doing this until it converges to V*

34.7 35.3

34.7 35.3

14.813.914.813.9V5

35.334.735.334.7V*

12.111.912.111.9V4

9.99.09.99.0V3

6.76.66.76.6V2

4343V1

0000V0

s4s3s2s1

. . .

© 2003, Ronald J. Williams Reinforcement Learning: Slide 36

Value Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

V*

34.7 35.3

34.7 35.3
a233.835.233.8s4

a232.834.832.2s3

a335.232.233.2s2

a233.234.833.8s1

besta3a2a1

Lookahead value
along action

Determining a greedy
policy for V*

7

© 2003, Ronald J. Williams Reinforcement Learning: Slide 37

Value Iteration
3

4

3

4

s1 s2

s3 s4

Optimal policy

© 2003, Ronald J. Williams Reinforcement Learning: Slide 38

Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy π

© 2003, Ronald J. Williams Reinforcement Learning: Slide 39

Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π

Compute its return:

© 2003, Ronald J. Williams Reinforcement Learning: Slide 40

Policy Iteration

4

2 1

2

s1 s2

s3 s4

Start with this policy

20
9.1

2)(

7.14)()9(.1)(
7.17)()9(.4)(

3.15
81.1
9.2

])9(.)9(.1)[9.2(
)9(.2)9(.19.2)(

4

13

12

1

42

32

=
−

=

=⋅+=
=⋅+=

=
−

=

++++=
++⋅+⋅+=

sV

sVsV
sVsV

sV

π

ππ

ππ

π

L

L

π
Really just solving a system

of linear equations

Compute its return:

© 2003, Ronald J. Williams Reinforcement Learning: Slide 41

Policy Iteration
3

2

4

2 1 3

1

2

1

4

2

2

s1 s2

s3 s4

15.3 17.7

14.7 20

a320.017.217.9s4

a319.018.914.8s3

a317.814.215.8s2

a115.218.920.0s1

besta3a2a1

Lookahead value
along action

Determining a greedy
policy for πV

© 2003, Ronald J. Williams Reinforcement Learning: Slide 42

Policy Iteration

4

2

1 2

s1 s2

s3 s4

New policy after one step of policy iteration

8

© 2003, Ronald J. Williams Reinforcement Learning: Slide 43

Policy Iteration vs. Value Iteration:
Which is better?

It depends.
Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration

Best of Both Worlds:
Modified Policy Iteration [Puterman]

…a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming
© 2003, Ronald J. Williams Reinforcement Learning: Slide 44

Backups
• Term used in the RL literature for any

updating of V(s) by replacing it by

where a is some action, which also includes
the possibility of replacing it by

• Closely related to notion of backing up
values in a game tree

)),((),(asTVasR γ+

))},((),({max asTVasRa γ+

© 2003, Ronald J. Williams Reinforcement Learning: Slide 45

Backups
• Term used in the RL literature for any

updating of V(s) by replacing it by

where a is some action, which also includes
the possibility of replacing it by

• Closely related to notion of backing up
values in a game tree

)),((),(asTVasR γ+

))},((),({max asTVasRa γ+

Sometimes call
this a backup
along action a

Sometimes call
this a max-
backup

© 2003, Ronald J. Williams Reinforcement Learning: Slide 46

Backups
• The operation of backing up values is one of

the primary links between MDP theory and
RL methods

• Some key facts making these classical MDP
algorithms relevant to online learning
• value iteration consists solely of (max-)backup

operations
• policy evaluation step in policy iteration can be

performed solely with backup operations (along
the policy)

• backups modify the value at a state solely based
on the values at successor states

© 2003, Ronald J. Williams Reinforcement Learning: Slide 47

Synchronous vs. asynchronous
• The value iteration and policy iteration algorithms

demonstrated here use synchronous backups, but
asynchronous backups (implementable by
“updating in place”) can also be shown to work

• Value iteration and policy iteration can be seen as
two ends of a spectrum

• Many ways of interleaving backup steps and policy
improvement steps can be shown to work, but not
all (Williams & Baird, 1993)

© 2003, Ronald J. Williams Reinforcement Learning: Slide 48

Generalized Policy Iteration
• GPI coined to apply to the wide range of RL

algorithms that combine simultaneous
updating of values and policies in intuitively
reasonable ways

• It is known that not every possible GPI
algorithm converges to an optimal policy

• However, only known counterexamples are
contrived

• Remains an open question whether some of
the ones implemented in practice can be
guaranteed to work

9

© 2003, Ronald J. Williams Reinforcement Learning: Slide 49

Learning – Finally!
• Suppose a situated agent doesn’t know the

reward function R and/or the transition
function T but only interacts with its
environment

• What then?
• One possibility: Learn the MDP through

exploration, then solve it using offline methods
• Another intriguing way: Never represent

anything about the MDP itself, just try to learn
the values directly – model free

• These are 2 extremes in an interesting spectrum
of possibilities

© 2003, Ronald J. Williams Reinforcement Learning: Slide 50

Temporal
Difference
Learning

Only maintain a V array…
nothing else

So you’ve got
V (s1), V (s2), ··· V(sn)

and you observe
s r s’

what should you do?
Can You Guess ?

[Sutton 1988]

A transition from s that receives
an immediate reward of r and
jumps to s’

© 2003, Ronald J. Williams Reinforcement Learning: Slide 51

TD Learning
After making a transition from s to s’ and receiving reward r,

we nudge V(s) to be closer to the estimated return based on
the observed successor, as follows:

() ()() () ()

s1ss
α

αγα VVrV −+′+←
is called a “learning rate” parameter.

For this represents a partial backup.

Furthermore, if the rewards and/or transitions are stochastic, as in a
general MDP, this is a sample backup.

The reward and next-state values are only noisy estimates of the
corresponding expectations, which is what offline DP would use in
the appropriate computations (full backup).

Nevertheless, this converges to the return for a fixed policy (under the
right technical assumptions, including decreasing learning rate)

1 <α

© 2003, Ronald J. Williams Reinforcement Learning: Slide 52

TD(λ)
• Updating the value at a state based on just the

succeeding state is actually the special case TD(0)
of a parameterized family of TD methods

• TD(1) updates the value at a state based on all
succeeding states

• For 0 < λ < 1, TD(λ) updates a state’s value base
on all succeeding states, but to a lesser extent the
further into the future

• Implemented by maintaining decaying eligibility
traces at each state visited (decay rate = λ)

• Helps distribute credit for future rewards over all
earlier actions Can help mitigate effects of violation of Markov property

© 2003, Ronald J. Williams Reinforcement Learning: Slide 53

Model-free RL

Why not use TD?
Observe

update
S a S’

r

() ()() () ()sVsVrsV ′−+′+← αγα 1
What’s wrong with this?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 54

Model-free RL

Why not use TD?
Observe

update
S a S’

r

() ()() () ()sVsVrsV ′−+′+← αγα 1
What’s wrong with this?

1. Still can’t choose actions without knowing what next state (or
distribution over next states) results: requires an internal model of T

2. The values learned will represent the return for the policy we’ve
followed, including any suboptimal exploratory actions we’ve taken:
won’t help us act optimally

10

© 2003, Ronald J. Williams Reinforcement Learning: Slide 55

State-Action Value Functions
• For any policy , define

by

where the initial state s(0) = s, the initial action
a(0) = a, and all subsequent states, actions, and
rewards arise from the transition, policy, and
reward functions, respectively.

• Just like except that action a is taken as the
very first step and only after this is policy
followed

π

∑
∞

=

=
0

)(),(
t

t trasQ γπ

Reals: →× ASQπ

πV
π

Once again, the correct expression
for a general MDP should use
expected values here

© 2003, Ronald J. Williams Reinforcement Learning: Slide 56

State-Action Value Functions
• Define , where is an optimal policy.
• There is a corresponding Bellman equation for

since

• Given any state-action value function Q, define a
policy to be greedy for Q if

for all s.
• An optimal policy is greedy for

** πQQ = *π
*Q

),(max)(** asQsV a=

π
),(maxarg)(asQs a=π

*Q

© 2003, Ronald J. Williams Reinforcement Learning: Slide 57

Q-learning
(Watkins, 1988)
• Assume no knowledge of R or T.
• Maintain a table-lookup data structure Q

(estimates of Q*) for all state-action pairs

• When a transition s r s’ occurs, do

• Essentially implements a kind of asynchronous
Monte Carlo value iteration, using sample backups

• Guaranteed to eventually converge to Q* as long
as every state-action pair sampled infinitely often

() ()() () ()asQasQrasQ
a

,1,max, αγα −+′′+←
′

© 2003, Ronald J. Williams Reinforcement Learning: Slide 58

Q-learning
• This approach is even cleverer than it looks: the

Q values are not biased by any particular
exploration policy. It avoids the credit assignment
problem.

• The convergence proof extends to any variant in
which every Q(s,a) is updated infinitely often,
whether on-line or not.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 59

Q-Learning: Choosing Actions
• Don’t always be greedy
• Don’t always be random (otherwise it will take a long time

to reach somewhere exciting)

• Boltzmann exploration [Watkins]

Prob(choose action a)

• With some small probability, pick random action; else pick
greedy action (called ε-greedy policy)

• Optimism in the face of uncertainty [Sutton ’90, Kaelbling
’90]

Initialize Q-values optimistically high to encourage exploration
Or take into account how often each (s,a) pair has been tried

()








−∝

t

as
K

,Qexp

© 2003, Ronald J. Williams Reinforcement Learning: Slide 60

Two-component RL systems
• One of the earliest RL systems (pole balancer of Barto,

Sutton & Anderson, 1983) had 2 components:
• Adaptive Search Element (ASE)
• Adaptive Critic Element (ACE)

• ASE essentially represents the policy
• ACE essentially represents the state value estimates –

updated using TD(λ)
• Both components adapted on-line simultaneously
• Overall approach is a prime example of Generalized Policy

Iteration
• No good mathematical analysis yet available for such

2-component systems

11

© 2003, Ronald J. Williams Reinforcement Learning: Slide 61

Learning or planning?
• Classical DP emphasis for optimal control

• Dynamics and reward structure known
• Off-line computation

• Traditional RL emphasis
• Dynamics and/or reward structure initially

unknown
• On-line learning

• Computation of an optimal policy off-line
with known dynamics and reward structure
can be regarded as planning

© 2003, Ronald J. Williams Reinforcement Learning: Slide 62

Integrating learning & planning
• Sutton’s 1990 Dyna system introduced a

seamless integration of RL and planning
• Stores a collection of transitions experienced
• Backups applied to

• current on-line transition
• plus a fixed number of other randomly chosen

stored transitions
• Improvement on this idea

• add a priority queue to prioritize backups along
transitions in parts of state space most likely to
improve performance fastest (Moore & Atkeson,
1993; Williams & Peng, 1993)

© 2003, Ronald J. Williams Reinforcement Learning: Slide 63

A toy problem
• The RL literature contains numerous

examples of toy problems designed to shed
light on the use of various techniques

• Here’s one ...

© 2003, Ronald J. Williams Reinforcement Learning: Slide 64

Maze Learning Task

S

G

Reward = -1 at every step γ = 1

G is an absorbing state, terminating any single trial

Effect of actions is deterministic

4 actions

© 2003, Ronald J. Williams Reinforcement Learning: Slide 65

Maze Learning Task

-5-6-7-8-9-10-11-12-13

-4-5-6-8-9-10-11-12

-3-4-5-6-7-8-12-13

-2-6-7 -8-9-13-14

-1-7-8-9-10-14-15

G 0-8-9-10-11-12-13-14

V* What’s the optimal
path from S to G?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 66

Another Maze Learning Task

S

G

Everything else same as before, except:

With some nonzero probability, a small wind gust might displace the agent one cell to the
right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

Now what’s the
optimal path
from S to G?

12

© 2003, Ronald J. Williams Reinforcement Learning: Slide 67

Challenges
• How do we apply these techniques to infinite (e.g.,

continuous), or even just very large, state spaces?
• Pole-balancer
• Mountain car
• Acrobot
• Multi-jointed snake
• Bioreactor

• Two basic approaches for continuous state spaces
• Quantize (to obtain a finite-state approximation)

• One promising approach: adaptive partitioning

• Use function approximators (nearest-neighbor, neural
networks, radial basis functions, tile codings, etc.)

Together with mazes of various
kinds, these tasks have
become benchmark test
problems for RL techniques

© 2003, Ronald J. Williams Reinforcement Learning: Slide 68

Dealing with large numbers of states

S15122189

:

S2

s1

VALUESTATE

Don’t use a Table…

use…
(Generalizers) (Hierarchies)

Splines

A Function
Approximator

Variable Resolution

Multi Resolution

Memory
BasedSTATE VALUE

[Munos 1999]

© 2003, Ronald J. Williams Reinforcement Learning: Slide 69

Function approximation
for value functions

Polynomials [Samuel, Boyan, Much O.R.
Literature]

Neural Nets [Barto & Sutton, Tesauro,
Crites, Singh, Tsitsiklis]

Splines Economists, Controls

Downside: All convergence guarantees disappear.

Backgammon, Pole
Balancing, Elevators,
Tetris, Cell phones

Checkers, Channel
Routing, Radio Therapy

© 2003, Ronald J. Williams Reinforcement Learning: Slide 70

Memory-based Value Functions
V(s) = V (most similar state in memory to s)

or
Average of V (20 most similar states)

or
Weighted Average of V (20 most similar states)
[Jeff Peng, Atkenson & Schaal,
Geoff Gordon, proved stuff
Scheider, Boyan & Moore 98]

“Planet Mars Scheduler”

© 2003, Ronald J. Williams Reinforcement Learning: Slide 71

Hierarchical Methods
Continuous State Space: “Split a state when statistically

significant that a split would
improve performance”

e.g. Simmons et al 83, Chapman
& Kaelbling 92, Mark Ring 94 …,
Munos 96

with interpolation!
“Prove needs a higher
resolution”

Moore 93, Moore &
Atkeson 95

Discrete Space:
Chapman & Kaelbling 92,
McCallum 95 (includes
hidden state)

A kind of Decision
Tree Value Function

Multiresolution

A hierarchy with high level “managers” abstracting low level “servants”
Many O.R. Papers, Dayan & Sejnowski’s Feudal learning, Dietterich 1998 (MAX-Q
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

Continuous Space

© 2003, Ronald J. Williams Reinforcement Learning: Slide 72

Open Issues
• Better ways to deal with very large state and/or

action spaces
• Theoretical understanding of various practical GPI

schemes
• Theoretical understanding of behavior when value

function approximators used
• More efficient ways to integrate learning of

dynamics and GPI
• Computationally tractable approaches when

Markov property violated
• Better ways to learn and take advantage of

hierarchical structure and modularity

13

© 2003, Ronald J. Williams Reinforcement Learning: Slide 73

Valuable References
• Books

• Bertsekas, D. P. & Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming. Belmont, MA:
Athena Scientific

• Sutton, R. S. & Barto, A. G. (1998).
Reinforcement Learning: An Introduction.
Cambridge, MA: MIT Press

• Survey paper
• Kaelbling, L. P., Littman, M. & Moore, A. (1996).

“Reinforcement learning: a survey,” Journal of
Artificial Intelligence Research, Vol. 4, pp. 237-
285. (Available as a link off the main Andrew
Moore tutorials web page.)

© 2003, Ronald J. Williams Reinforcement Learning: Slide 74

If we had time…
• Value function approximation

Use a Neural Net to represent V [e.g. Tesauro]
Use a Neural Net to represent Q [e.g. Crites]
Use a decision tree

…with Q-learning [Chapman & Kaelbling ’91]
…How to split up continuous space?

• Significance test on Q values [Chapman &
Kaelbling ‘91]

• Execution accuracy monitoring [Moore ’91]
• Game Theory [Moore & Atkeson ’95]

[Al-Ansari & Williams ’98]

