Reinforcement Learning
and Markov Decision
Processes

Ronald J. Williams
CSG120, Fall 2003

Contains a small number of slides adapted from two related Andrew Moore
tutorials found at http://www.cs.cmu.edu/~awm/tutorials

© 2003, Ronald J. Williams December 4, 2003

What is reinforcement learning?

« A reinforcement learning agent
e interacts with its environment
« is goal-seeking

e The term reinforcement learning is used to
characterize tasks having these properties

« A reinforcement learning algorithm is any
algorithm for addressing such tasks

© 2003, Ronald J. Williams Reinforcement Learning: Slide 2

Historical background
e Original motivation: animal learning
 Early emphasis: neural net implementations
and heuristic properties
* Now appreciated that it has close ties with
e optimal control
¢ dynamic programming
o Al state-space search

» Best formalized as a set of techniques to
handle Markov Decision Processes

© 2003, Ronald J. Williams Reinforcement Learning: Slide 3

Reinforcement learning task

Agent

e N o

Environment

a(0) ac1) az)
s(0) 5(1) s(2) .
0) 1) n2)

Goal: Learn to choose actions that maximize the cumulative reward

o)+ yr)+y2n2)+...
y = discount factor

where 0< y<1.

2003, Ronald J. Williams Reinforcement Learning: Slide 4

Reinforcement learning task

Here we assume sensation = state
(“observable state”); otherwise, have more
difficult partially observable state problem.

Sensatio/ / Reward \:ction

Environment
acn) ac1) az)
() () 52) ...
"o ") n2)

Goal: Learn to choose actions that maximize the cumulative reward

o)+ yr)+y2r2)+...

where 0< y<1.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 5

Markov Decision Process

e Finite set of states S
* Finite set of actions 4 *
¢ Immediate reward function
R :S5x A — Reals

¢ Transition (next-state) function

T:SxA4—>S
* More generally, Rand 7 are treated as stochastic
» We'll stick to the above notation for simplicity

¢ In general case, treat the immediate rewards and next
states as random variables, take expectations, etc.
* The theory easily allows for the possibility that there are different sets of actions
available at each state. For simplicity we use one set for all states.

2003, Ronald . Williams Reinforcement Learning: Slide 6

Markov Decision Process

« If no rewards and only one action, this is
just a Markov chain

e Sometimes also called a Controlled Markov
Chain

o Overall objective is to determine a policy
T:8S > A

such that some measure of cumulative
reward is optimized

© 2003, Ronald). Williams Reinforcement Learning: Slide 7

What's a policy?

If agent is in this state Then a good action is
S1 as
S, ay
S3 a
S4 ds

Note: To be more precise, this is called a stationary policy because it depends only
on the state. The policy might depend, say, on the time step as well. Such
policies are sc i useful; they're called nonstationary policies.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 8

A Markov Decision Process

v=09

Youruna
startup 3
company.
In every
state you
must
choose
between
Saving Tllustrates that
money or , the next-state
Advertising. ** Rich &\ |Gemnosy

Famous probability

Here the reward Unknown

shown inside any

distribution over
successor states

+10 +10

state represents the in the general
reward received upon case.

entering that state.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 9

Applications of MDPs

Many important problems are MDPs....

.. Robot path planning

.. Travel route planning

.. Elevator scheduling

.. Bank customer retention

.. Autonomous aircraft navigation
... Manufacturing processes

.. Network switching & routing

And many of these have been successfully handled
using RL methods

2003, Ronald J. Williams Reinforcement Leaming: Slide 10

From a situated agent’s perspective
e At time step ¢

¢ Observe that I'm in state s(%)

¢ Select my action a(t)

¢ Observe resulting immediate reward r(%)
e Now time step is ¢t+1

e Observe that I'm in state s(¢+1)

e etc.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 11

Cumulative Reward

e Objective: Findapolicy 7*:S — 4
maximizing, for every state s, the return

o0
D)
=0
where
e s50)=s
¢ each action a(%)is chosen according to 77 *

e each subsequent s(t+1) arises from the transition function
T

¢ each immediate reward r(¢) is determined by the
immediate reward function R

* ¥ is a discount factor in [0, 1]

2003, Ronald . Williams Reinforcement Leaming: Slide 12

Technical remarks

o If the next state and/or immediate reward
functions are stochastic, then the r(¢) values
are random variables and the return is
defined as the expectation of this sum

« If the MDP has absorbing states, the sum
may actually be finite

e We stick with this infinite sum notation for the
sake of generality

» The discount factor can be taken to be 1 in
absorbing-state MDPs

» The formulation we use is called /nfinite-horizon

© 2003, Ronald). Williams Reinforcement Learning: Slide 13

Why the discount factor?

¢ Models idea that future rewards are not
worth quite as much the longer into the
future they're received
¢ used in economic models

¢ Also models situations where there is a
nonzero fixed probability of termination at
any time

¢ Makes the math work out nicely

« with bounded rewards, sum guaranteed to be
finite even in infinite-horizon case

© 2003, Ronald J. Williams Reinforcement Learning: Slide 14

Interesting fact
For every MDP there exists an optimal policy.

It's a policy such that for every possible start
state there is no better option than to follow
the policy.

Can you see why this is true?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 15

Computing an Optimal Policy
Idea One:
Run through all possible policies.
Select the best.

What's the problem ??

2003, Ronald J. Williams Reinforcement Leaming: Slide 16

Where's the learning?

e Standard MDP theory starts with knowledge
of Rand 7 and tries to solve for an optimal
policy
e can be viewed as planning using a known model
* however, can be intractable for various reasons

e even with Rand 7 known, there may be
reasons to use techniques developed in RL
research to compute good policies

e What if Rand/or 7 are not known?
o this is basis of most RL research
« look at this a lot more later

© 2003, Ronald J. Williams Reinforcement Learning: Slide 17

What about directly learning a policy?

¢ One possibility: Use supervised learning
* Where do training examples come from?
* Need prior expertise
e What if set of actions is different in different states?
(e.g. games)
¢ Another possibility: Generate and test

» Search the space of policies, evaluating many
candidates

» Genetic algorithms, genetic programming, e.g.
¢ Policy-gradient techniques

» Upside: can work even in non-MDP situations (e.g.,
POMDPs)

» Downside: the space of policies may be way too big

2003, Ronald . Williams Reinforcement Leaming: Slide 18

Back to MDP theory ...
e It turns out that
¢ RL theory
¢ MDP theory
¢ Al game-tree search

all agree on the idea that evaluating states is
a useful thing to do.

e A (state) value function V'is any function
mapping states to real numbers:

V :S — Reals

© 2003, Ronald). Williams Reinforcement Learning: Slide 19

State Value Functions
e For any policy 7, define the state value

. T
function by 0 Reminder: Use expected
T — t values in the
V (S) - Z e F(t) stochastic case.

=0
where the initial state is s and all
subsequent states, actions, and rewards
arise from the transition, policy, and reward
functions, respectively.

e Define V" =V7", where 7 *is an optimal
policy.

© 2003, Ronald J. Williams Reinforcement Learing: Slide 20

Return from a policy

e J/”is the return (cumulative reward)
obtained by following policy 7 (as a function
of the start state)

e V'is the optimal return (i.e., the return
obtained by following an optimal policy)

e Recall that the return is the quantity we
want to maximize

It can be shown that an optimal policy maximizes the return from
all starting states. I.e., there is no policy that gives a higher
return than the optimal policy when starting from some states
but not when starting from others.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 21

Bellman equations
For any state sand policy =

V7(s)=R(s,z(s)+ V" (T(s,7(s)))
For any state s,
V*(s) =max{R(s,a)+ }/V*(T(s,a))}

Extremely important and useful

recurrence relations
Can be used to compute the return from a given policy or
to compute the optimal return (Dynamic Programming)

2003, Ronald J. Williams Reinforcement Leaming: Slide 22

Bellman equations: general form

For completeness, here are the Bellman equations
for stochastic MDPs:

V7(5) = Ris, m()+ 7 D Py (R(s)V " (s)
V() =max{R(s.0)+ 72 P (@ (5}

where R(s,a)now represents E(7|s,a) and

P_.(a) = probability that the next state is s~ given
that action ais taken in state s.

© 2003, Ronald J. Williams Reinforcement Learning: Slide 23

From values to policies

¢ Given any state value function V, define a
policy 7 to be greedy for V if, for all s,

7(s)=argmax{R(s,a)+ WV (T(s,a))}

¢ The right-hand side can be viewed as a
1-step lookahead estimate of the return
from 7 based on the estimated return from

successor states

Yet another reminder: In the general
case, this is a shorthand for the
appropriate expectations as spelled
out in detail on the previous slide.

2003, Ronald . Williams Reinforcement Learning: Slide 24

Facts about greedy policies
¢ An optimal policy is greedy for |/
« Follows from Bellman equation
o If 7z is not optimal then a greedy policy for
V" will yield a larger return than =
* Not hard to prove
« Basis for policy iteration method

© 2003, Ronald). Williams Reinforcement Learning: Slide 25

Finding an optimal policy

Value Iteration Method
Choose any initial state value function V,
Repeat forall 7> 0

For all s
Vn+1(s)<—maxa {R(s,a)+7Vn(T(s,a))}

Until convergence

This converges to Vand any greedy policy with respect to it
will be an optimal policy

Just a technique for solving the Bellman equations for v
(system of |S] nonlinear equations in |S] unknowns)

© 2003, Ronald J. Williams Reinforcement Leaming: Slide 26

Finding an optimal policy

Policy Iteration Method
Choose any initial policy 7,
Repeat for all n> 0
Compute V'™
Choose 7,,, greedy with respect to V'™
Until 77 =7

Finding an optimal policy

Can you prove that this terminates with an optimal policy?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 27

Policy Iteration Method
Choose any initial policy 7,
Repeat forall 7> 0
Compute v Policy Improvement Step
Choose 7,,; greedy with respect to V'™
Until V7™ =)™

Policy Evaluation Step

Can you prove that this terminates with an optimal policy?

2003, Ronald J. Williams Reinforcement Leaming: Slide 28

Evaluating a given policy
e There are at least 2 distinct ways of
computing the return for a given policy 7

« Solve the corresponding system of linear
equations (the Bellman equation for ™)

¢ Use an iterative method analogous to value
iteration but with the update

Vn+1(s) <« R(s,7(s))+ 7Vn (T(s,7(s)))

« First way makes sense from an offline
computational point of view

e Second way relates to online RL

© 2003, Ronald J. Williams Reinforcement Learning: Slide 29

Deterministic MDP to Solve
3
Gee 3 actions at each state:
v a1 3y 3
4 Numbers on arcs denote
immediate reward

received
e

Find optimal policy when y = 0.9

2003, Ronald . Williams Reinforcement Leaming: Slide 30

Value Iteration

0

)

©)
(=)
Arbitrary initial value function V,

?

© 2003, Ronald). Williams Reinforcement Learning: Slide 31

Value Iteration

3 Computing a new value for s;
using 1-step lookahead with
previous values:

For action a; lookahead value is
2+ (.9)(0) = 2

For action a, lookahead value is
3+(.9)0) =3

For action a; lookahead value is
2+ (.9)(0) = 2

a |3 |a3

2 3 2

0 0
Arbitrary initial value function 1, ¥(s)=max{2,3,2}=3

© 2003, Ronald J. Willams Reinforcement Leaming: Slide 32

Value Iteration

3

Lookahead value
along action

a, | a, | a; | max

ss| 2|3 |2]3

s, |2]1]|4]|a

Arbitrary initial value function V,

© 2003, Ronald J. Williams Reinforcement Learning: Slide 33

Value Iteration

Updated
approximation
to V*:

V,(s)=3
Vi(s,)=4
V(s)=3
Vis)=4

New value function V; after one step of value iteration

2003, Ronald J. Williams Reinforcement Learning: Slide 34

Value Iteration

s, |s: |sz |ss

v,]o o |o Jo

v, |3 4 3 4

V,| 66 |67 |66 |67

V; |90 [99 |90 |99

V, | 119 |121 |119 |121

Vs | 139 [148 |13.9 |14.8

V*‘34.7 ‘35.3 ‘34.7 ‘35.3

Keep doing this until it converges to I*

© 2003, Ronald J. Williams Reinforcement Learning: Slide 35

Value Iteration

Determining a greedy
policy for I*

Lookahead value
along action

ay a, | a; |best

S; [338]348332| a,

s, | 332322352 a,

s; | 322348328 a,

s, |338[352|338| a,

2003, Ronald . Williams Reinforcement Leaming: Slide 36

Value Iteration

Optimal policy

© 2003, Ronald). Williams Reinforcement Learning: Slide 37

Policy Iteration

Start with this policy 7z

© 2003, Ronald J. Willams Reinforcement Learning: Slide 38

Policy Iteration

Compute its return:
V(5)=2+.914(.9)2-24+(.9P+--
=Q2+99[1+(.9)2+(9)4+-1]
=29 153
1-.81 '
V7(s,)=4+(.9)-V 7(s)=17.7
V(s)=1+(.9)-V7(s)=14.7

2
Va(s)=—2_=20

G)=1=5
“

© 2003, Ronald J. Williams Reinforcement Learning: Slide 39

Start with this policy 7

Policy Iteration

Compute its return:
Va(5)=2+.91+(.9)2-2+(.9)3 4+
=2+ 9[1+(.9)2+(.9)+:-]
=29 _I53
1-.81
Va(s)=d+(.9)V7(s)=17.7
Va(s)=1+(9)V 7(s)=14.7
-2
V() =1=5=20

“

2003, Ronald J. Williams Reinforcement Leaming: Slide 40

Really just solving a system
of linear equations

Start with this policy 7

Policy Iteration

Determining a greedy
policy for v~

Lookahead value
along action

ay a, | a; |best

s; |20.0| 189|152 | a;

s, |158 (142|178 | as

s; |148 (189|190 a,

sy [179[172]200| ay

© 2003, Ronald J. Williams Reinforcement Learning: Slide 41

Policy Iteration

New policy after one step of policy iteration

2003, Ronald . Williams Reinforcement Leaming: Slide 42

Policy Iteration vs. Value Iteration:
Which is better?

It depends.
Lots of actions? Choose Policy Iteration
Already got a fair policy? Policy Iteration
Few actions, acyclic? Value Iteration

Best of Both Worlds:

Modified Policy Iteration [Puterman]
...a simple mix of value iteration and policy iteration

3rd Approach

Linear Programming

© 2003, Ronald). Williams Reinforcement Learning: Slide 43

Backups

e Term used in the RL literature for any
updating of I/s) by replacing it by

R(s,a)+yV (T (s,a))

where ais some action, which also includes
the possibility of replacing it by

max {R(s,a)+ ¥V (T(s,a))}

« Closely related to notion of backing up
values in a game tree

© 2003, Ronald J. Williams Reinforcement Learning: Slide 44

Backups

e Term used in the RL literature
updating of I/s) by replacing i

R(s,a)+ V(T (s,a))

Sometimes call
this a backup
along action a

Sometimes call
this a max-

where ais some action, which
backup

the possibility of replacing it b
maxa {R(s,a)+ 1V (T(s,a))}

« Closely related to notion of backing up
values in a game tree

© 2003, Ronald J. Williams Reinforcement Learning: Slide 45

Backups

» The operation of backing up values is one of
the primary links between MDP theory and
RL methods
* Some key facts making these classical MDP
algorithms relevant to online learning
« value iteration consists solely of (max-)backup
operations

« policy evaluation step in policy iteration can be
performed solely with backup operations (along
the policy)

» backups modify the value at a state solely based
on the values at successor states

2003, Ronald J. Williams Reinforcement Leaming: Slide 46

Synchronous vs. asynchronous

¢ The value iteration and policy iteration algorithms
demonstrated here use synchronous backups, but
asynchronous backups (implementable by
“updating in place”) can also be shown to work

¢ Value iteration and policy iteration can be seen as
two ends of a spectrum

¢ Many ways of interleaving backup steps and policy
improvement steps can be shown to work, but not
all (Williams & Baird, 1993)

© 2003, Ronald J. Williams Reinforcement Learning: Slide 47

Generalized Policy Iteration

¢ GPI coined to apply to the wide range of RL
algorithms that combine simultaneous
updating of values and policies in intuitively
reasonable ways

e It is known that not every possible GPI
algorithm converges to an optimal policy

« However, only known counterexamples are
contrived

¢ Remains an open question whether some of
the ones implemented in practice can be
guaranteed to work

2003, Ronald . Williams Reinforcement Leaming: Slide 48

Learning — Finally!
¢ Suppose a situated agent doesn't know the
reward function R and/or the transition
function 7 but only interacts with its
environment
e What then?
* One possibility: Learn the MDP through
exploration, then solve it using offline methods
» Another intriguing way: Never represent
anything about the MDP itself, just try to learn
the values directly — model free
* These are 2 extremes in an interesting spectrum
of possibilities

© 2003, Ronald). Williams Reinforcement Learning: Slide 49

Temporal
Difference [Sutton 1988]

Learning

Only maintain a V array...
nothing else

So you've got

Vi(s1), V(s)) = V(sy)

and you observe

s A transition from s that receives
s —I-s an immediate reward of r and
what should you do? MR Ee

Can You Guess ?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 50

TD Learning

After making a transition from s to s’ and receiving reward r,
we nudge V(s) to be closer to the estimated return based on
the observed successor, as follows:

V(s)(— a(r + 7V(s’))+ (1 -«)V (s)
« is called a “learning rate” parameter.
For @ < 1 this represents a partial backup.

Furthermore, if the rewards and/or transitions are stochastic, as in a
general MDP, this is a sample backup.

The reward and next-state values are only noisy estimates of the
corresponding expectations, which is what offline DP would use in
the appropriate computations (/u// backup).

Nevertheless, this converges to the return for a fixed policy (under the
right technical assumptions, including decreasing learning rate)

© 2003, Ronald J. Williams Reinforcement Learning: Slide 51

TD(MN)

¢ Updating the value at a state based on just the
succeeding state is actually the special case TD(0)
of a parameterized family of TD methods

e TD(1) updates the value at a state based on a//
succeeding states

e For 0 < A < 1, TD(A) updates a state’s value base
on all succeeding states, but to a lesser extent the
further into the future

¢ Implemented by maintaining decaying eligibility
traces at each state visited (decay rate = A)

¢ Helps distribute credit for future rewards over all
earlier actions ‘ Can help mitigate effects of violation of Markov property ‘

2003, Ronald J. Williams Reinforcement Leaming: Slide 52

Model-free RL

Why not use TD?
;

Observe
OO

update
V(s) “— a(r + 7/V(s'))+ (l - a)V(s')

What's wrong with this?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 53

Model-free RL

Why not use TD?

Observe -
o4O

update
V(s) “«— a(r + 7V(s'))+ (l - a)V(s')
What's wrong with this?

1. Still can't choose actions without knowing what next state (or
distribution over next states) results: requires an internal model of 7

2. The values learned will represent the return for the policy we've
followed, including any suboptimal exploratory actions we've taken:
won't help us act optimally

2003, Ronald . Williams Reinforcement Learning: Slide 54

State-Action Value Functions
« For any policy 7, define Q" : S x 4 — Reals

by O (s.a)=3 y'r(1)

where the initial state s5(0) = s, the initial action
a(0) = a, and all subsequent states, actions, and
rewards arise from the transition, policy, and
reward functions, respectively.

Just like V" except that action ais taken as the
very first step and only after this is policy 7
followed

Once again, the correct expression
for a general MDP should use
expected values here

© 2003, Ronald). Williams Reinforcement Learning: Slide 55

State-Action Value Functions
« Define Q" =Q", where 7" is an optimal policy.
» There is a corresponding Bellman equation for Q’k
since . «
V' (s)=max, QO (s,a)
¢ Given any state-action value function @, define a
policy 7 to be greedy for Qif
7(s) =argmax, O(s,a)
for all s.
¢ An optimal policy is greedy for Q*

© 2003, Ronald J. Williams Reinforcement Leaming: Slide 56

Q-learning
(Watkins, 1988)
¢ Assume no knowledge of Ror 7.

¢ Maintain a table-lookup data structure Q
(estimates of Q*) for all state-action pairs

» When a transition s—— s’ occurs, do
O(s,a)« a(r + 7 max ol(s', a'))+ (1-a)0(s,a)

* Essentially implements a kind of asynchronous
Monte Carlo value iteration, using sample backups

¢ Guaranteed to eventually converge to Q* as long
as every state-action pair sampled infinitely often

© 2003, Ronald J. Williams Reinforcement Learning: Slide 57

Q-learning

» This approach is even cleverer than it looks: the
Q values are not biased by any particular
exploration policy. It avoids the credit assignment
problem.

* The convergence proof extends to any variant in
which every Q(s,a) is updated infinitely often,
whether on-line or not.

2003, Ronald J. Williams Reinforcement Leaming: Slide 58

Q-Learning: Choosing Actions

« Don'’t always be greedy
» Don't always be random (otherwise it will take a long time
to reach somewhere exciting)

* Boltzmann exploration [Watkins]

Prob(choose action a) « exp[—

)

K

t

» With some small probability, pick random action; else pick
greedy action (called ¢-greedy policy)
» Optimism in the face of uncertainty [Sutton 90, Kaelbling
'90]
Initialize Q-values optimistically high to encourage exploration
Or take into account how often each (s,a) pair has been tried

© 2003, Ronald J. Williams Reinforcement Learning: Slide 59

Two-component RL systems

* One of the earliest RL systems (pole balancer of Barto,
Sutton & Anderson, 1983) had 2 components:
¢ Adaptive Search Element (ASE)
¢ Adaptive Critic Element (ACE)

e ASE essentially represents the policy

* ACE essentially represents the state value estimates —
updated using TD(A)

* Both components adapted on-line simultaneously

* Overall approach is a prime example of Generalized Policy
Iteration

* No good mathematical analysis yet available for such
2-component systems

2003, Ronald . Williams Reinforcement Leaming: Slide 60

10

Learning or planning?

e Classical DP emphasis for optimal control
¢ Dynamics and reward structure known
e Off-line computation

e Traditional RL emphasis
* Dynamics and/or reward structure initially

unknown

¢ On-line learning

e Computation of an optimal policy off-line
with known dynamics and reward structure
can be regarded as planning

© 2003, Ronald). Williams Reinforcement Learning: Slide 61

Integrating learning & planning
¢ Sutton’s 1990 Dyna system introduced a
seamless integration of RL and planning
e Stores a collection of transitions experienced
» Backups applied to
e current on-line transition
¢ plus a fixed number of other randomly chosen
stored transitions
¢ Improvement on this idea

¢ add a priority queue to prioritize backups along
transitions in parts of state space most likely to
improve performance fastest (Moore & Atkeson,
1993; Williams & Peng, 1993)

© 2003, Ronald J. Williams Reinforcement Leaming: Slide 62

A toy problem

e The RL literature contains numerous
examples of toy problems designed to shed
light on the use of various techniques

¢ Here's one ...

© 2003, Ronald J. Williams Reinforcement Learning: Slide 63

Maze Learning Task

4| actions G

Reward = -1 at every step y=1
G is an absorbing state, terminating any single trial

Effect of actions is deterministic

© 2003, Ronald J. Williams Reinforcement Learning: Slide 64

Maze Learning Task

-14 |-13 |-12 |-11 |-10 | -9
-15 | -14 -10| 9| -8
-14 | -13 9| -8| -7
-13 |-12 8| -7| 6| 5| 4| 3
-12 (-11 |-10 | -9| -8 6| -5| -4

-13 |-12 |-11 |-10 | 9| -8| -7| 6| -5

V* What's the optimal
path from S to G?

© 2003, Ronald J. Williams Reinforcement Learning: Slide 65

Another Maze Learning Task
G

Now what’s the
optimal path
S from S to G?

Everything else same as before, except:

With some nonzero probability, a small wind gust might displace the agent one cell to the
right or left of its intended direction of travel on any step

Entering any of the 4 patterned cells at the southwest corner yields a reward of -100

© 2003, Ronald J. Williams Reinforcement Leaming: Slide 66

11

Challenges

¢ How do we apply these techniques to infinite (e.g.,
continuous), or even just very large, state spaces?
* Pole-balancer
¢ Mountain car

Together with mazes of various
kinds, these tasks have
become benchmark test

e Acrobot problems for RL techniques

¢ Multi-jointed snake
* Bioreactor
* Two basic approaches for continuous state spaces
¢ Quantize (to obtain a finite-state approximation)
* One promising approach: adaptive partitioning
« Use function approximators (nearest-neighbor, neural
networks, radial basis functions, tile codings, etc.)

© 2003, Ronald). Williams Reinforcement Learning: Slide 67

Dealing with large numbers of states

STATE VALUE

st

Don’t use a Table... s

(Generalizers) v (Hierarchies)
./0\/ : } [Munos 1999]
=
A Function

Approximator

=7

© 2003, Ronald . Williams. ‘==t

/Rénforcement Learning: Side 68

Function approximation
for value functions

Polynomials [Samuel, Boyan, Much O.R.
Literature]
Neural Nets [Barto & Sutton, Tesauro

Crites, Singh, Tsitsiklis]

Checkers, Channel
Routing, Radio Therapy

Backgammon, Pole
Balancing, Elevators,
Tetris, Cell phones

Splines

Downside:| All convergence guarantees disappear.

Economists, Controls

© 2003, Ronald J. Williams Reinforcement Learning: Slide 69

Memory-based Value Functions
W(s) = V(most similar state in memory to s)

or
Average of /(20 most similar states)

or
Weighted Average of /(20 most similar states)
[Jeff Peng, Atkenson & Schaal,

Geoff Gordon, —|proved stuff |

Scheider, Boyan & Moore 98]
4

’ “Planet Mars Scheduler” ‘

2003, Ronald J. Williams Reinforcement Leaming: Slide 70

Hierarchical Methods

Continuous State Space: “Split a state when statistically
significant that a split would

Discrete Space: improve performance”

Chapman & Kaelbling 92, S (io'l‘g';”%“: Space
McCallum 95 (includes ©.g. simmons et al 63, Luhapman

hidden state) f‘/ll:(:sslb?@g 92, Mﬁk Ring 94 ...,

with interpolation!
“Prove needs a higher
resolution”

‘ Multiresolution ‘ Moore 93, Moore &

— = Atkeson 95
A hierarchy with high level “managers” abstracting low level “servants”

Many O.R. Papers, Dayan & Sejnowski's Feudal learning, Dietterich 1998 (MAX-Q
hierarchy) Moore, Baird & Kaelbling 2000 (airports Hierarchy)

© 2003, Ronald J. Williams

A kind of Decision
Tree Value Function

Reinforcement Learning: Slide 71

Open Issues
* Better ways to deal with very large state and/or
action spaces
Theoretical understanding of various practical GPI
schemes
Theoretical understanding of behavior when value
function approximators used
More efficient ways to integrate learning of
dynamics and GPI
Computationally tractable approaches when
Markov property violated
Better ways to learn and take advantage of
hierarchical structure and modularity

2003, Ronald . Williams Reinforcement Leaming: Slide 72

12

Valuable References

¢ Books

e Bertsekas, D. P. & Tsitsiklis, J. N. (1996).
Neuro-Dynamic Programming. Belmont, MA:
Athena Scientific

e Sutton, R. S. & Barto, A. G. (1998).
Reinforcement Learning.: An Introduction.
Cambridge, MA: MIT Press

¢ Survey paper

e Kaelbling, L. P., Littman, M. & Moore, A. (1996).
“Reinforcement learning: a survey,” Journal of
Artificial Intelligence Research, Vol. 4, pp. 237-
285. (Available as a link off the main Andrew
Moore tutorials web page.)

© 2003, Ronald). Williams Reinforcement Learning: Slide 73

If we had time...

* Value function approximation
» Use a Neural Net to represent V [e.g. Tesauro]
» Use a Neural Net to represent Q [e.g. Crites]
» Use a decision tree
...with Q-learning [Chapman & Kaelbling '91]
...How to split up continuous space?
Significance test on Q values [Chapman &
Kaelbling ‘91]
Execution accuracy monitoring [Moore '91]
Game Theory [Moore & Atkeson '95]
[Al-Ansari & Williams '98]

© 2003, Ronald J. Williams Reinforcement Learning: Slide 74

13

