Outline

o Neural network learning
e Perceptrons/Linear threshold functions

o Gradient descent

Connectionist Models

Consider humans:
o Neuron switching time ~ .001 second
o Number of neurons ~ 10"
o Connections per neuron ~ 10*~3
e Scene recognition time ~ .1 second
® 100 inference steps doesn’t seem like enough

— much parallel computation

Properties or artificial neural nets (ANN’s):
o Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

e Emphasis on tuning weights automatically

Example Applications

NETtalk [Sejnowski]
o Inputs: english text
e Qutput: spoken phonemes
Phoneme recognition [Waibel]
e Inputs: waveform features
e Outputs: b,c,d,...
Robot control [Pomerleau]
e Inputs: perceived features

e Outputs: steering control

ALVINN drives 70 mph on highways

Perceptron

&

n n
Zwi o=d i Zwix >0
= -1 otherwise

1 ifw(]+w1x1+---+w,,x,, >0
—1 otherwise.

o, z) :{

Sometimes we’ll use simpler vector notation:
o(F) = 1if@-#>0
| =1 otherwise.

Decision Surface of a Perceptron

@

Represents some useful functions
e What weights represent
g(x1,22) = AND(21,29)7?
But some functions not representable
e e.g., not linearly separable

e Therefore, we’ll want networks of these...

Perceptron training rule

w; — w; + Aw;
where
Aw; = n(t — o)z,
Where:
o t = ¢(Z) is target value

® 0 is perceptron output

(1)

e 7 is small constant (e.g., .1) called learning rate

Make sense?
e What if output o is too big?

—and z; positive, negative?

Perceptron training rule

Can prove it will converge
o If training data is linearly separable

e and 7 sufficiently small

Gradient Descent

To understand, consider simpler linear unit, where

0= 1wy + w1k + -+ + Wy

Let’s learn w;’s that minimize the squared error
1 .
E[@] = = ¥ (tq— 04)*
(] Z(IGD(a= o)

Where D is set of training examples

Gradient Descent

\“‘\‘ eSese
XX XX

Gradient

V B[]

o8 08 08
owy Ow;” Ow,
Training rule:

AW = —nVE[d]

10

Gradient Descent

9 01 ,

B~ B2 o)
= %% aiwl_(tzl —04)®
= %%2(% — 011)%(&[— 04)
= %(td - O,J)awi(td — 0 Ty)

o0FE

o, = %(td*Od)(*l‘i,d)

11

Gradient Descent

GRADIENT-DESCENT(training_examples,n)

Each training ezample is a pair of the form
(Z,t), where T is the vector of input values,
and t is the target output value. 1 is the
learning rate (e.g., .05).
e Initialize each w; to some small random value
e Until the termination condition is met, Do
— Initialize each Aw; to zero.
— For each (Z,t) in training_examples, Do
* Input the instance ¥ to the unit and
compute the output o

* For each linear unit weight w;, Do
Aw; + Aw; +n(t — o)z;
— For each linear unit weight w;, Do

w; < w; + Aw;

12

Summary

Incremental (Stochastic) Gradient Descent

Linear unit training rule uses gradient descent

o Guaranteed to converge to hypothesis with
minimum squared error

o Given sufficiently small learning rate

e Even when training data not describable in H

Perceptron training rule guaranteed to succeed if
o Training examples are linearly separable

o Sufficiently small learning rate 7

13

Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient VEp[w]
2. W + W — nVEp[d]
Incremental mode Gradient Descent:
Do until satisfied
o For each training example d in D

1. Compute the gradient V E[]
2. % & — VE]

L1 .

ED[w] = 5 IIED(td - Od)z
L1 .

E,l[w] = i(td — Od)z

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough

14

Sigmoid Unit

o(z) is the sigmoid function
1
1+e
: i
Nice property: ﬂfifl =o(z)(1 —o(z))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation

15

Error Gradient for a Sigmoid Unit

OF 0 1 2
dw; . Ow, ideLD(t'] o)
= %% a?u;(t" — o)’
= %%2(td — Od) 3i’w,'(td - Od)
Doy
Sl &)
0, net
= 7§(td o) 37162 311)[1

But we know:
oy do(netyq)

= = 04(1 — o4
onety dnety ou(o)
8netd _ 8(’!17 - f,l)
871},’ - 81.[),’

=Tigd
So:
oF
6’!1},‘

= - ta — 04)04(1 — 04)i 4
ngD(l 0a)04(04)Tia

16

