Outline

o Neural network learning
e Perceptrons/Linear threshold functions

o Gradient descent

Connectionist Models

Consider humans:
o Neuron switching time ~ .001 second
o Number of neurons ~ 10"
o Connections per neuron ~ 10*~3
e Scene recognition time ~ .1 second
® 100 inference steps doesn’t seem like enough

— much parallel computation

Properties or artificial neural nets (ANN’s):
o Many neuron-like threshold switching units
e Many weighted interconnections among units
e Highly parallel, distributed process

e Emphasis on tuning weights automatically

Example Applications

NETtalk [Sejnowski]
o Inputs: english text
e Qutput: spoken phonemes
Phoneme recognition [Waibel]
e Inputs: waveform features
e Outputs: b,c,d,...
Robot control [Pomerleau]
e Inputs: perceived features

e Outputs: steering control

ALVINN drives 70 mph on highways

Perceptron
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Sometimes we’ll use simpler vector notation:
o(F) = 1if@-#>0
| =1 otherwise.

Decision Surface of a Perceptron
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Represents some useful functions
e What weights represent
g(x1,22) = AND(21,29)7?
But some functions not representable
e e.g., not linearly separable

e Therefore, we’ll want networks of these...




Perceptron training rule

w; — w; + Aw;
where
Aw; = n(t — o)z,
Where:
o t = ¢(Z) is target value

® 0 is perceptron output

(1)

e 7 is small constant (e.g., .1) called learning rate

Make sense?
e What if output o is too big?

—and z; positive, negative?

Perceptron training rule

Can prove it will converge
o If training data is linearly separable

e and 7 sufficiently small

Gradient Descent

To understand, consider simpler linear unit, where

0= 1wy + w1k + -+ + Wy

Let’s learn w;’s that minimize the squared error
1 .
E[@] = = ¥ (tq— 04)*
(] Z(IGD( a= o)

Where D is set of training examples

Gradient Descent
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Training rule:

AW = —nVE[d]
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Gradient Descent
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Gradient Descent

GRADIENT-DESCENT(training_examples,n)

Each training ezample is a pair of the form
(Z,t), where T is the vector of input values,
and t is the target output value. 1 is the
learning rate (e.g., .05).
e Initialize each w; to some small random value
e Until the termination condition is met, Do
— Initialize each Aw; to zero.
— For each (Z,t) in training_examples, Do
* Input the instance ¥ to the unit and
compute the output o

* For each linear unit weight w;, Do
Aw; + Aw; +n(t — o)z;
— For each linear unit weight w;, Do

w; < w; + Aw;
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Summary

Incremental (Stochastic) Gradient Descent

Linear unit training rule uses gradient descent

o Guaranteed to converge to hypothesis with
minimum squared error

o Given sufficiently small learning rate

e Even when training data not describable in H

Perceptron training rule guaranteed to succeed if
o Training examples are linearly separable

o Sufficiently small learning rate 7
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Batch mode Gradient Descent:
Do until satisfied

1. Compute the gradient VEp[w]
2. W + W — nVEp[d]
Incremental mode Gradient Descent:
Do until satisfied
o For each training example d in D

1. Compute the gradient V E[]
2. % & — VE ]

L1 .

ED[w] = 5 IIED(td - Od)z
L1 .

E,l[w] = i(td — Od)z

Incremental Gradient Descent can approximate
Batch Gradient Descent arbitrarily closely if n
made small enough
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Sigmoid Unit

o(z) is the sigmoid function
1
1+e
: i
Nice property: ﬂfifl =o(z)(1 —o(z))

We can derive gradient decent rules to train
e One sigmoid unit

o Multilayer networks of sigmoid units —
Backpropagation
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Error Gradient for a Sigmoid Unit
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