Outline

e Decision tree representation
o ID3 learning algorithm
o Entropy, Information gain

o Overfitting

Decision Tree for PlayTennis

Outlook
Sunny Overcast Rain

Humidity ‘ Wind
[Humiciy Yes [ wind_]

Decision Trees

Decision tree representation:
o Each internal node tests an attribute
e Each branch corresponds to attribute value

o Each leaf node assigns a classification

How would we represent:

High Normal Strong Weak e A,V, XOR
No Ves No \YS e (AANB)V(CAN-DAE)
o M of N
1 2 3
When to Consider Decision Trees Top-Down Induction of Decision Trees Entropy
e Instances describable by attribute—value pairs Main loop: o1
o Target function is discrete valued 1. A + the “best” decision attribute for next node % L
e Disjunctive hypothesis may be required 2. Assign A as decision attribute for node £
o Possibly noisy training data 3. For each value of A, create new descendant of 05t
node P
Examples: 4. Sort training examples to leaf nodes r
* Medical diagnosis 5. If training examples perfectly classified, Then o
o Credit risk analysis STOP, Else iterate over new leaf nodes - R

o Modeling calendar scheduling preferences

Which attribute is best?
[29+,35-] Al=? [29+,35-] A2=?

t f t f

[21+,5-] [8+,30-] [18+,33-] [11+,2-]

e S is a sample of training examples
® 1, is the proportion of positive examples in .S
® p, is the proportion of negative examples in S

e Entropy measures the impurity of S

Entropy(S) = —pe logypy — p- loga pe




Entropy

Entropy(S) = expected number of bits needed to
encode class (& or ©) of randomly drawn
member of S (under the optimal, shortest-length
code)

Why?

Information theory: optimal length code assigns

—log, p bits to message having probability p.

So, expected number of bits to encode & or & of
random member of S:

Po(—logy ps) + po(—logy p-)

Entropy(S) = —pglogs ps — p-logs po

Information Gain

Gain(S, A) = expected reduction in entropy due to
sorting on A

Sy
Gain(S, A) = Entropy(S) — 15, |Ent7’opy(55)
veValues(A) | S|
[29+,35-] Al1=? [29+,35-] A2=?
t f f
[21+,5-] [8+,30-] [18+,33-] [11+,2-]

Training Examples

Day Outlook Temperature Humidity Wind PlayTennis
D1  Sunny Hot High Weak No
D2  Sunny Hot High  Strong No
D3 Overcast Hot High  Weak Yes
D4  Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6  Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8  Sunny Mild High Weak No
D9  Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes

D11  Sunny Mild Normal Strong Yes

D12 Overcast Mild High  Strong Yes

D13 Overcast Hot Normal Weak Yes

D14  Rain Mild High  Strong No

Selecting the Next Attribute

Which Attribute is the Best Classifier?

5:[9+,5-]
E=0.940

WQ

[34,4-] (64,1 (6+,2-] [34,3-]
E=0.985 E=0.552 E=0.811 E=1.00

High Normal

Gain (s, Humidit
= 94

y) Gain (s, Win
0 - (7/14).985 - (7/14).592 = .94
1

d)
0 - (8/14).811 - (6/14)1.0
a8

Classifying examples by Humidity provides more information gain than by Wind
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Partially Learned Decision Tree

{D1, D2, ..., D14}
[9+,5-]

sunny Overcast Rain

{D1,D2,08,09,D11}  {D3,D7,D12,D13} {D4,D5,D6,D10,D14}
[2+,31] [4+,0-] [3+,2]

;

Which attribute should be tested here?

Ssunny = {D1,D2,D8,D9,D11}
Gain (Sgunny, Hunidity) = 970 - (3/5)0.0 - (2/5)0.0 = .970
Gain (Sgupny, Temperature)= .970 - (2/5)0.0 - (2/5)1.0 - (1/5)0.0 = .570
Gainls, ,Wind)= .970 - (2/5)1.0 - (3/5).918 = .019

sunny
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Hypothesis Space Search by ID3
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Hypothesis Space Search by ID3

e Hypothesis space is complete!

— Target function surely in there...

e Outputs a single hypothesis (which one?)

— Can’t play 20 questions...

® No back tracking

— Local minima...

o Statisically-based search choices

—Robust to noisy data...

e Inductive bias: approx “prefer shortest tree”
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Overfitting in Decision Trees

Consider adding noisy training example #15:

Sunny, Hot, Normal, Strong, PlayTennis = No

What effect on earlier tree?

Sunny Overcast Rain

Humidity ‘ Wind
[ Humidiy | Ves [ wind_]

High Normal Strong Weak
No Yes No Yes
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Overfitting

Consider error of hypothesis h over
o training data: errors..;,(h)
e entire distribution D of data: errorp(h)

Hypothesis h € H overfits training data if there is
an alternative hypothesis A’ € H such that

6TT0T[7'(L[IZ(h) < errorirein (hl)

but
errorp(h) > errorp(h')
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Overfitting in Decision Tree Learning

Accuracy

09

16




