NEURAL NETWORKS
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(l Brains i

10" neurons of > 20 types, 10'* synapses, 1ms-10ms cycle time
Signals are noisy “spike trains” of electrical potential
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McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:
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(l Activation functions I
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(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 + ¢ %)

Changing the bias weight 17, ; moves the threshold location
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Implementing logical functions
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McCulloch and Pitts: every Boolean function can be implemented
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(l Network structures I

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = W} ;)
g(x)=sign(x), a;= £ 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in BNs

— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.
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( Feed-forward example |

Feed-forward network = a parameterized family of nonlinear functions:
a; = g(W.
= g(Wss
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[ Perceptrons [

Perceptron output
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( Expressiveness of perceptrons |

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc.
Represents a linear separator in input space:
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( Perceptron learning [

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is
1 . 1 Y
E= 2E7‘7‘2 = 2(g/ — hw(x))?,

Perform optimization search by gradient descent:

oE dErr P L
aw, = Errx ow, =Errx —— aw, (y— ,/(Z Wyz;))

= —FErrx (/(in) X

Simple weight update rule:
W; — W, +a x Err x ¢'(in) x z;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs
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[ Perceptron learning contd. [

Perceptron learning rule converges to a consistent function
for any linearly separable data set
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[ Multilayer perceptrons |

Layers are usually fully connected,;
numbers of hidden units typically chosen by hand

Output units 3
Wi

Hidden units EY
Wej

Input units a
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( Expressiveness of MLPs |

All continuous functions w/ 2 layers, all functions w/ 3 layers

(% %)

Chapter 19, Sections 1-5 14

[ Back-propagation learning [

Output layer: same as for single-layer perceptron,
Wi = Wjit+axa; xA;

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj = ¢'(in;) ;IV/,A, .

Update rule for weights in hidden layer:
Wi Wi +axa,x A .

(Most neuroscientists deny that back-propagation occurs in the brain)
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( Back-propagation derivation |

The squared error on a single example is defined as

1 .
E= 2;(1// - a/)l 5
where the sum is over the nodes in the output layer.
orE . Oa; Agl(in;)
oW, (v “ow,, = (i = a) ow,,
din;

7(1}( - (h)g/(”mau,/./ = 7(1// - (7/)57 Un/)a”/r” (XI: W /./”1)

= —(yi — a)g'(ini)a; = —a; A
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( Back-propagation derivation contd. [
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[ Back-propagation learning contd. [

At each epoch, sum gradient updates for all examples and apply

Total error on training set
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Usual problems with slow convergence, local minima
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[ Back-propagation learning contd. |
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( Handwritten digit recognition
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3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error

LeNet: 768-192-30-10 unit MLP = 0.9%
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[ Summary [

Most brains have lots of neurons; each neuron = linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.
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