NEURAL NETWORKS

CHAPTER 19, SECTIONS 1-5

Chapter 19, Sections 15 1

|

Outline

{ Brains

& Neural networks

{ Perceptrons

{ Multilayer perceptrons

{ Applications of neural networks

Chapter 19, Sections 1-5

(l Brains i

10" neurons of > 20 types, 10'* synapses, 1ms-10ms cycle time
Signals are noisy “spike trains” of electrical potential

Axonal arborization

Axon from another cell

Synapse

Dendrite

Synapses

Cell body or Soma

Chapter 19, Sections 15 3

|

McCulloch—Pitts “unit”

Output is a “squashed” linear function of the inputs:

a; — g(in;)) =g (E,Wf/_/(z‘/)

ap=-1
— zinif

Bias Weight

. (.

—

Input
Links

=g(in)

g

Input Activation
Function Function ~OutPut

Output

L

inks

Chapter 19, Sections 15

(l Activation functions I

g(iny) g(iny)

+1 +1

in; | in;

@ (b)
(a) is a step function or threshold function
(b) is a sigmoid function 1/(1 + ¢ %)

Changing the bias weight 17, ; moves the threshold location

Chapter 19, Sections 15

|

Implementing logical functions

Wo=15

AND

Wo=05

W, =05

OR

ST

NOT

-

McCulloch and Pitts: every Boolean function can be implemented

Chapter 19, Sections 15

6

(l Network structures I

Feed-forward networks:
— single-layer perceptrons
— multi-layer perceptrons

Feed-forward networks implement functions, have no internal state

Recurrent networks:
— Hopfield networks have symmetric weights (W, ; = W} ;)
g(x)=sign(x), a;= £ 1; holographic associative memory
— Boltzmann machines use stochastic activation functions,
~ MCMC in BNs

— recurrent neural nets have directed cycles with delays
= have internal state (like flip-flops), can oscillate etc.

Chapter 19, Sections 15

(Feed-forward example |

Feed-forward network = a parameterized family of nonlinear functions:
a; = g(W.
= g(Wss

cag+ Wi ay)
gWiz-ar+Waz-ag) +Wis-g(Wia-ar + Way - as))

Chapter 19, Sections 15 &

[Perceptrons [

Perceptron output

W
/,////f///"/

’ i
//,///”’/’,,
7
//, //ﬁu

// /

/ ! (/
/) //,//,/;//
e

Chapter 19, Sections 15 9

(Expressiveness of perceptrons |

Consider a perceptron with g = step function (Rosenblatt, 1957, 1960)
Can represent AND, OR, NOT, majority, etc.
Represents a linear separator in input space:

YiWiz; >0 or W-x>0

5

1 [] 1 o
?
0 0
0 1 L \ 0 1 b
@ lyand I, ® lyorl, © 1y xor I,
Chapter 19, Sections 15 10

(Perceptron learning [

Learn by adjusting weights to reduce error on training set

The squared error for an example with input x and true output y is
1 . 1 Y
E= 2E7‘7‘2 = 2(g/ — hw(x))?,

Perform optimization search by gradient descent:

oE dErr P L
aw, = Errx ow, =Errx —— aw, (y— ,/(Z Wyz;))

= —FErrx (/(in) X

Simple weight update rule:
W; — W, +a x Err x ¢'(in) x z;

E.g., +ve error = increase network output
= increase weights on +ve inputs, decrease on -ve inputs

Chapter 19, Sections 1-5 11

[Perceptron learning contd. [

Perceptron learning rule converges to a consistent function
for any linearly separable data set

1 1
B 0.9 8 0.9
g g
508 X 508 Decision tree ——
5 s 5P 8 Percepiron ----—-
xg- 0.7 Ll § 0.7
c c
S 06 Perceptron —+— S 06
5 Decision tree ---x--- 5
gz‘ 05 § 0.5
a a

04 04 +
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
Training set size Training set size

Chapter 19,

[Multilayer perceptrons |

Layers are usually fully connected,;
numbers of hidden units typically chosen by hand

Output units 3
Wi

Hidden units EY
Wej

Input units a

Chapter 19, Sections 1-5 13

(Expressiveness of MLPs |

All continuous functions w/ 2 layers, all functions w/ 3 layers

(% %)

Chapter 19, Sections 1-5 14

[Back-propagation learning [

Output layer: same as for single-layer perceptron,
Wi = Wjit+axa; xA;

where A; = Err; x ¢'(in;)

Hidden layer: back-propagate the error from the output layer:
Aj = ¢'(in;) ;IV/,A, .

Update rule for weights in hidden layer:
Wi Wi +axa,x A .

(Most neuroscientists deny that back-propagation occurs in the brain)

Chapter 19, Sections 1-5 15

(Back-propagation derivation |

The squared error on a single example is defined as

1 .
E= 2;(1// - a/)l 5
where the sum is over the nodes in the output layer.
orE . Oa; Agl(in;)
oW, (v “ow,, = (i = a) ow,,
din;

7(1}(- (h)g/(”mau,/./ = 7(1// - (7/)57 Un/)a”/r” (XI: W /./”1)

= —(yi — a)g'(ini)a; = —a; A

Chapter 19, Sections 15 16

(Back-propagation derivation contd. [

8?5./ o Z/(?J: _ (")g)ii%f‘_v; - Z/(?J, - (I,)(?I(;Zh/)
o é(y, B a/)g/(ﬂ]/)% _ %A,% (% l,,‘,,/‘,a/)
= -3 A,m»a?{{f P ”)C;I(m)
= -3 AiW;ig'(in;) ;Ilinx,/
aJ

= — Z/: A,l"’/’,_/g/(in/)a”/,k./ (% H’r/“/(l;‘.)

= =S AW,id (in))ar = —arA,

Chapter 19, Sections 1-5 17

[Back-propagation learning contd. [

At each epoch, sum gradient updates for all examples and apply

Total error on training set

0 50 100 150 200 250 300 350 400
Number of epochs

Usual problems with slow convergence, local minima

Chapter 19

[Back-propagation learning contd. |

I
A
e TR
09|, sty
Pof
5 -
g 08 R
5
% 0.7 1
8 06 Multilayer network ——
X i Decision treg -
05 fi]
04 SR

0O 10 20 30 40 50 60 70 80 90 100
Training set size

Chapter 19, Sections 1-5 19

(Handwritten digit recognition

O/ |33M

5

&

211121714

9)

é

g
q

i

3-nearest-neighbor = 2.4% error
400-300-10 unit MLP = 1.6% error

LeNet: 768-192-30-10 unit MLP = 0.9%

Chapter 19, Sections 1-5

20

[Summary [

Most brains have lots of neurons; each neuron = linear—threshold unit (?)
Perceptrons (one-layer networks) insufficiently expressive

Multi-layer networks are sufficiently expressive; can be trained by gradient
descent, i.e., error back-propagation

Many applications: speech, driving, handwriting, credit cards, etc.

Chapter 19, Sections 1-5 21

