INFERENCE IN BAYESIAN NETWORKS
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( Outline |

{ Exact inference by enumeration
{ Exact inference by variable elimination
{ Approximate inference by stochastic simulation

{ Approximate inference by Markov chain Monte Carlo
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(l Inference tasks |

Simple queries: compute posterior marginal P(X;|E =e)
e.g., P(NoGas|Gauge = empty, Lights = on, Starts = false)

Conjunctive queries: P(X;, X;[E=¢) = P(X;|E=¢)P(X,|X;,E=¢)

Optimal decisions: decision networks include utility information;
probabilistic inference required for P(outcomelaction, evidence)

Value of information: which evidence to seek next?
Sensitivity analysis: which probability values are most critical?

Explanation: why do | need a new starter motor?

AIMAZe Chapter 1445 3

( Inference by enumeration |

Slightly intelligent way to sum out variables from the joint without actually
constructing its explicit representation

Simple query on the burglary network:
P(B|j, m) () /®
=aP(B,j,m)

=aX.2,P(B,e,a,j,m) @ @

Rewrite full joint entries using product of CPT entries:
P(B|j,m)

= a2 X,P(B)P(e)P(a| B, e)P(jla)P(m|a)

— aP(B)%.P(e)Z,P(al B, &) P(jla) P(ma)

Recursive depth-first enumeration: O(n) space, O(d") time
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( Enumeration algorithm |

function ENUMERATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, observed values for variables E
bn, a Bayesian network with variables {X} U E U'Y

Q(X) < a distribution over X, initially empty
for each value z; of X do

extend e with value z; for X

Q(z;) +~ ENUMERATE-ALL(VARS[bn], €)
return NORMALIZE(Q(X))

function ENUMERATE-ALL(vars, ) returns a real number
if EMPTY?(vars) then return 1.0
Y + FIRsT(vars)
if Y has value yin e
then return P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e)
else return 5, P(y | Pa(Y)) x ENUMERATE-ALL(REST(vars), e,)
where e, is e extended with Y = y
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( Evaluation tree |

Enumeration is inefficient: repeated computation
e.g., computes P(j|a)P(m|a) for each value of e

P(j| ~a) P(j|~a)
.05 .05

P(m|—a) P(m|—a)
.01 . .01
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( Inference by variable elimination |

Variable elimination: carry out summations right-to-left,
storing intermediate results (factors) to avoid recomputation

P(B|j,m)
= 0 P(B) 5. PO . P(lB.0) Plle) Pmi)
1
= (B)E P(e )E P(a \B e (J|" fu(a)
= aP(B)X.P(e)X,P(a|B,e)fr(a) fu(a)
= aP(B)X.P(e)Xufala,b,e) f1(a) fu(a)
= aP(B)X.P(e)fasu(b,e) (sum out A)
= ozP(B)fL* 47(b) (sum out E)
= afp(b) x fpam(b)
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( Variable elimination: Basic operations

Summing out a variable from a product of factors:
move any constant factors outside the summation
add up submatrices in pointwise product of remaining factors

Bofix oo x fo=fix oo X fiZy fir X - X fr=fix oo x fix fx

assuming f1,..., f; do not depend on X

Pointwise product of factors f; and fo:
fil@e, @iy U)X fa(Yns - Yk 215 21)
= fl@1, T Yty Yy 2, -, 20)
Eg. fi(a,b) x fulb,c) = f(a,b,c)
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( Variable elimination algorithm |

function ELIMINATION-ASK(X, e, bn) returns a distribution over X
inputs: X, the query variable
e, evidence specified as an event
bn, a belief network specifying joint distribution P(X7, ..., X,)

factors < []; vars<+ REVERSE(VARS[bn])
for each var in vars do

factors < [MAKE-FACTOR(var, e)|factors)

if var is a hidden variable then factors < SuM-OUT(var, factors)
return NORMALIZE(POINTWISE-PRODUCT(factors))
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( Irrelevant variables

Consider the query P(JohnClalls|Burglary = true)

P(J|b) = aP(b) S P(e) S Palb, ¢)P(J|a) 5 P(m|a) (A

Sum over m is identically 1; M is irrelevant to the query

Thm 1: Y is irrelevant unless Y € Ancestors({X} UE)

Here, X = JohnCalls, E={Burglary}, and
Ancestors({X} UE) = {Alarm, Earthquake}
so M is irrelevant

(Compare this to backward chaining from the query in Horn clause KBs)
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(l Irrelevant variables contd. |

Defn: moral graph of Bayes net: marry all parents and drop arrows

Defn: A is m-separated from B by C iff separated by C in the moral graph
Thm 2: Y is irrelevant if m-separated from X by E @ @
For P(JohnCalls|Alarm = true), both @
Burglary and Farthquake are irrelevant 0 @
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( Complexity of exact inference

Singly connected networks (or polytrees):
— any two nodes are connected by at most one (undirected) path
— time and space cost of variable elimination are O(d"n)

Multiply connected networks:
- can reduce 3SAT to exact inference = NP-hard
— equivalent to counting 3SAT models = #P-complete

1.AvBvC
2.CvDv-A
3.BvCv-D
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( Inference by stochastic simulation |

Basic idea:
1) Draw N samples from a sampling distribution .S
2) Compute an approximate posterior probability P

3) Show this converges to the true probability 7
Outline: @

- Sampling from an empty network

— Rejection sampling: reject samples disagreeing with evidence

— Likelihood weighting: use evidence to weight samples

— Markov chain Monte Carlo (MCMC): sample from a stochastic process
whose stationary distribution is the true posterior
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Sampling from an empty network

function PRIOR-SAMPLE(bn) returns an event sampled from bn.
inputs: bn, a belief network specifying joint distribution P(Xj, ..., X,,)
X 4— an event with n elements
fori = 1tondo
z; +—a random sample from P(X; | Parents(X;))
return x
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( Example | ( Example |
P(C) P(C)
50 50
C [P(SI©) C [P(RIC) C [P(SI©) C |P(RIC)
T 10 @ @ T 80 T 10 @ @ T 80
F .50 F| .20 F .50 F| .20
Grass Grass
S RPWISR) S RPWISR)
TT .99 TT .99
T F .90 T F .90
F T .90 F T .90
F F .01 F F .01
( Example | ( Example |
P(C) P(C)
.50 .50
C [P(SIO) C [P(RIC) C [P(SIO) C |P(RIC)
T 10 @ @ T 80 T .10 @ T 80
F .50 F| .20 F .50 F| .20
Grass Grass
S RPWESR) S RPWISR)
TT .99 TT .99
T F .90 T F .90
F T .90 F T .90
F F .01 F F .01

AIMAZe Chapter 14.4-5 17

AIMAZe Chapter 144-5




( Example | ( Example |
P(C) P(C)
.50 .50
C |P(SIC) C |P(RIC) C |P(SIC) C |P(RIC)
T| .10 T| .80 T| .10 T| .80
F| .50 F| .20 F| .50 F| .20
Wet @
Grass Grass
S R|P(W|SR) S R|P(WI|SR)
TT .99 TT .99
TF .90 TF .90
F T .90 FT .90
F F .01 F F .01
( Example | [ Sampling from an empty network contd. |
P(C) Probability that PRIORSAMPLE generates a particular event
-50 Sps(x1...2,) = II]_ P(x;| Parents(X;)) = Pz ... z,)
i.e., the true prior probability
E.g., Sps(t, f,t,1) =0.5%x0.9x0.8x0.9=0.324 = P(t, f,¢,1)
C |PSIC) C |P(RIC) Let Nps(zy ... z,) be the number of samples generated for event zy, ..., z,
T| .10 T| .80
E|l 50 El 20 Then we have
\lgllo P(Il, cey D) = A\hglo Nps(z1,...,2,)/N
= SPS(Ily---ywn)
P(W|S,R) = P(z1...2,)

mTTmHAl»
mH4T |
©
o
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That is, estimates derived from PRIORSAMPLE are consistent

Shorthand: P(z1,...,1,) ~ Pz ... 1,)
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( Rejection sampling

P(X|e) estimated from samples agreeing with e

function REJECTION-SAMPLING(X, €, bn, N) returns an estimate of P(X|e)
local variables: N, a vector of counts over X, initially zero

for j=1to N do
X <~ PRIOR-SAMPLE(bn)
if x is consistent with e then
N[a] ¢~ N[a]+1 where z is the value of X in x
return NORMALIZE(N[X])

E.g., estimate P(Rain|Sprinkler =true) using 100 samples
27 samples have Sprinkler =true
Of these, 8 have Rain = true and 19 have Rain= false.

P(Rain|Sprinkler = true) = NORMALIZE((8, 19)) = (0.296,0.704)

Similar to a basic real-world empirical estimation procedure
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( Analysis of rejection sampling

P(X|e) = aNps(X, e)
= Npg(X,e)/Nps(e) (normalized by Nps(e))
~P(X,e)/P(e) (property of PRIORSAMPLE)
=P(Xl|e) (defn. of conditional probability)

(algorithm defn.)

Hence rejection sampling returns consistent posterior estimates
Problem: hopelessly expensive if P(e) is small

P(e) drops off exponentially with number of evidence variables!
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( Likelihood weighting |

Idea: fix evidence variables, sample only nonevidence variables,
and weight each sample by the likelihood it accords the evidence

function LIKELIHOOD-WEIGHTING(X, e, bn, N) returns an estimate of P(X|e)
local variables: W, a vector of weighted counts over X, initially zero

for j=1to N do

X, w4~ WEIGHTED-SAMPLE(bn)

W(z] < W{z] + w where z is the value of X in x
return NORMALIZE(W[X])

function WEIGHTED-SAMPLE(bn, €) returns an event and a weight

X < an event with n elements; w+« 1
for i =1ton do
if X; has a value z; in e
then w« w x P(X;= z; | Parents(X;))

( Likelihood weighting example |

[50]
c P(RIC)
T .80
F 20

PWISR)

R

T .99
F .90
T .90
F .01

TTnHAAl®»

else z; < a random sample from P(X; | Parents(X;)) w=1.0
return x, w
PRV A Chae 5 2
( Likelihood weighting example | ( Likelihood weighting example |
= =
P(RIC) c C |P(RIC)
80 T T| 80
20 F F| 20
NS Grads
S R[PWISR) S RPWISR)
TT| 9 TT| 9
TF .90 TF .90
FT .90 FT .90
FF|l 0L FF|l oL
w = 1.0 w = 1.0
ROV Al s
( Likelihood weighting example | ( Likelihood weighting example |
=) =
P(RIC) c c [PRIO)
80 T T| 80
20 F F| 20
S R[PWISR) S RPWISR)
TT| 99 A
TF| 9 TFl 90
FT| 90 FT| 90
FFl 0L FFl 0L
w=10x0.1 w=10x0.1
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( Likelihood weighting example |
[50]

c [rso)] C |P(RIC)
T| 10 T[] 8
F| 50 Fl 20
S RPWISR)
TT| 99
TF| 0
FT| 9
FFl o1
w=1.0x0.1
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( Likelihood weighting example |
[50]

c [rso)] ¢ [PRIO)
T| 10 T| &
F| 50 Fl 20

S RIP(WISR)
TT| 9
TFl 9
FT| 9
FF|l o1

w = 1.0x0.1x0.99 =0.099
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( Likelihood weighting analysis |

Sampling probability for WEIGHTEDSAMPLE is
Sws(z,e) = Hf-ZIP(zAParents(Zl))
Note: pays attention to evidence in ancestors only

= somewhere “in between" prior and
posterior distribution (SprinkeD) (Rain)

Weight for a given sample z, e is
w(z,e) = [II", P(e;| Parents(E;))

Weighted sampling probability is
Sws(z,e)w(z,e)
=TT, P(z|Parents(Z)) T P(e)|Parents(E;))
= P(z,e) (by standard global semantics of network)

Hence likelihood weighting returns consistent estimates
but performance still degrades with many evidence variables
because a few samples have nearly all the total weight
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( Approximate inference using MCMC |

“State” of network = current assignment to all variables.

Generate next state by sampling one variable given Markov blanket
Sample each variable in turn, keeping evidence fixed

function MCMC-ASK(X, e, bn, N) returns an estimate of P(X|e)
local variables: N[X], a vector of counts over X, initially zero
7, the nonevidence variables in bn
X, the current state of the network, initially copied from e

initialize x with random values for the variables in Y
for j=1to N do
Nlz] <~ N[z] + 1 where z is the value of X in x
for each Z; in Z do
sample the value of Z; in x from P(Z;|M B(Z,)) given the values of
MB(Z;) in x
return NORMALIZE(N[X])

Can also choose a variable to sample at random each time
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(l The Markov chain |

With Sprinkler =true, WetGrass =true, there are four states:

9%
D

Wander about for a while, average what you see
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[ MCMC example contd. |

Estimate P(Rain|Sprinkler = true, WetGrass = true)

Sample Cloudy or Rain given its Markov blanket, repeat.
Count number of times Rain is true and false in the samples.

E.g., visit 100 states
31 have Rain=true, 69 have Rain = false

P(Ram|5prmk’ler =true, WetGrass = true)
= NorMALIZE((31,69)) = (0.31,0.69)

Theorem: chain approaches stationary distribution:
long-run fraction of time spent in each state is exactly
proportional to its posterior probability
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( Markov blanket sampling

Markov blanket of C'loudy is

o)

Sprinkler and Rain
Markov blanket of Rain is '@
Cloudy, Sprinkler, and WetGrass

Probability given the Markov blanket is calculated as follows:

Easily implemented in message-passing parallel systems, brains

Main computational problems:
1) Difficult to tell if convergence has been achieved
2) Can be wasteful if Markov blanket is large:
P(X;

M B(X;)) won't change much (law of large numbers)
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MB(X;)) = P(a}| Parents(X;))U 7 coniaren(x, P (2j| Parents(Z;))

37

( Summary |

Exact inference by variable elimination:
— polytime on polytrees, NP-hard on general graphs
— space = time, very sensitive to topology

Approximate inference by LW, MCMC:
— LW does poorly when there is lots of (downstream) evidence
— LW, MCMC generally insensitive to topology
— Convergence can be very slow with probabilities close to 1 or 0
- Can handle arbitrary combinations of discrete and continuous variables
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