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( Bayesian networks |

A simple, graphical notation for conditional independence assertions
and hence for compact specification of full joint distributions

Syntax:
a set of nodes, one per variable
a directed, acyclic graph (link ~ “directly influences”)
a conditional distribution for each node given its parents:
P(X;|Parents(X;))

In the simplest case, conditional distribution represented as
a conditional probability table (CPT) giving the
distribution over X; for each combination of parent values
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( Example |

Topology of network encodes conditional independence assertions:

) @

Weather is independent of the other variables

Toothache and Catch are conditionally independent given Clavity
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( Example |

I'm at work, neighbor John calls to say my alarm is ringing, but neighbor
Mary doesn't call. Sometimes it's set off by minor earthquakes. Is there a
burglar?

Variables: Burglar, Earthquake, Alarm, JohnCalls, MaryCalls
Network topology reflects “causal” knowledge:

— A burglar can set the alarm off

— An earthquake can set the alarm off

— The alarm can cause Mary to call

— The alarm can cause John to call
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( Example contd. |
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( Compactness |

A CPT for Boolean X; with k& Boolean parents has
2% rows for the combinations of parent values

®
®

Each row requires one number p for X; = true Q
(the number for X; = false is just 1 — p)

Q
@

If each variable has no more than % parents,
the complete network requires O(n - 2%) numbers

l.e., grows linearly with 2, vs. O(2") for the full joint distribution

For burglary net, 1+ 144 +2 + 2 =10 numbers (vs. 2° — 1 = 31)
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( Global semantics |

Global semantics defines the full joint distribution

as the product of the local conditional distributions: @
P(Xy,..., X,) = [II_ | P(X;|Parents(X;)) }:A);
eg., P(FAmAaN-bA—e) @ @
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(l Global semantics |

"Global” semantics defines the full joint distribution

as the product of the local conditional distributions: B ;E)
P(Xy,...,X,) = II'_,P(X;|Parents(X,)) (A

eg., PGAmAaN-bA—e) @ @

= P(jla)P(m|a)P(a] b, ~¢) P(~)P(~e)
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( Local semantics |

Local semantics: each node is conditionally independent
of its nondescendants given its parents

Theorem: Local semantics < global semantics
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(l Markov blanket |

Each node is conditionally independent of all others given its
Markov blanket: parents + children + children’s parents
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( Constructing Bayesian networks |

Need a method such that a series of locally testable assertions of
conditional independence guarantees the required global semantics

1. Choose an ordering of variables X, ..., X,
2. Fori=1ton
add X; to the network
select parents from X,..., X; ; such that
P(X;|Parents(X;)) = P(X;| X1, ..., Xi—1)

This choice of parents guarantees the global semantics:

P(Xy,...,X,) = II'_ [ P(X;|Xy, ..., X;_1) (chain rule)
= II!_,P(X;|Parents(X;)) (by construction)
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( Example |

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)?
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( Example |

Suppose we choose the ordering M, J, A, B, E

P(J|M) = P(J)? No
P(A|J, M) = P(A|J)? P(A|J, M) = P(A)?
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( Example |

Suppose we choose the ordering M, J, A, B, E

N =

Burglary

(J]M) = P(J)? No

(A]J, M) = P(A|J)? P(A|J, M) = P(A)? No
(B|A, J, M) = P(B|A)?
(

P
P
P
P(B|A,J,M) = P(B)?
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( Example |

Suppose we choose the ordering M, J, A, B, E

Earthquake
JIM)=P(J)? No

P(
P(A|J, M) = P(A|J)? P(A|J,M) = P(A)? No
P(B|A,J, M) = P(B|A)? Yes
P(B|A, J, M) P(B)? No

P(E|B, A, J, M P(E|A)?

P(E|B,A,J,M) = P(E|A, B)?
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( Example |

Suppose we choose the ordering M, J, A, B, E

Earthquake
M) = (/)? No -

(J

(A|J, M) = P(A|J)? P(A|J, M) =P(A)? No
(BIA, J,M) = P(B|A)? Yes

(B|A, J, M) = P(B)? No
(
(

E|B, A, J, ]\[ P(E|A)? No

P
P
r
P
P
P(E|B,A,J,M)=P(E|A,B)? Yes

AIMAZe Chapter 14.1-3 17

( Example contd. |

Earthquake

Deciding conditional independence is hard in noncausal directions
(Causal models and conditional independence seem hardwired for humans!)
Assessing conditional probabilities is hard in noncausal directions

Network is less compact: 1 + 2 + 4 + 2 + 4 =13 numbers needed
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( Example: Car diagnosis |

Initial evidence: car won't start
Testable variables (green), “broken, so fix it” variables (orange)
Hidden variables (gray) ensure sparse structure, reduce parameters

alternator fanbelt
prokel prokel

battery f

starter
klocked broke|
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( Example: Car insurance |
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( Compact conditional distributions |

CPT grows exponentially with no. of parents
CPT becomes infinite with continuous-valued parent or child

Solution: canonical distributions that are defined compactly

Deterministic nodes are the simplest case:
X = f(Parents(X)) for some function f

E.g., Boolean functions
NorthAmerican < CanadianV US V Mezxican
E.g., numerical relationships among continuous variables

OLevel
ot

= inflow + precipitation - outflow - evaporation
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[ Compact conditional distributions contd. |

Noisy-OR distributions model multiple noninteracting causes
1) Parents U ... Uy include all causes (can add leak node)
2) Independent failure probability ¢; for each cause alone

= P(X|U1...U]'7“ ]url...“Uk):l—H?:lqz‘

Cold Flu  Malaria| P(Fever)| P(—Fever)

F F F 0.0 1.0

F F T 0.9 0.1

F T F 0.8 0.2

F T T 0.98 0.02=0.2x0.1

T F F 0.4 0.6

T F T 0.94 0.06 =0.6 x 0.1

T T F 0.88 0.12=0.6 x 0.2

T T T 0.988 0.012=0.6 x 0.2 x 0.1

Number of parameters linear in number of parents
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I Hybrid (discrete+continuous) networks |

Discrete (Subsidy? and Buys?); continuous (Harvest and Cost)

Subsidy? @
N
CosD

Buys?

Option 1: discretization—possibly large errors, large CPTs
Option 2: finitely parameterized canonical families

1) Continuous variable, discrete++-continuous parents (e.g., C'ost)
2) Discrete variable, continuous parents (e.g., Buys?)
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( Continuous child variables |

Need one conditional density function for child variable given continuous
parents, for each possible assignment to discrete parents

Most common is the linear Gaussian model, e.g.,:

P(Cost=c|Harvest = h, Subsidy? =true)
= N(ah + by, 04)(c)
1 (c — (ath + bt)]zj

Ot

1
= exp | —
o2 P [ 2
Mean Cost varies linearly with Harvest, variance is fixed

Linear variation is unreasonable over the full range
but works OK if the likely range of Harvest is narrow
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(l Continuous child variables |

5
Cost

All-continuous network with LG distributions
= full joint distribution is a multivariate Gaussian

Discrete+continuous LG network is a conditional Gaussian network i.e., a
multivariate Gaussian over all continuous variables for each combination of
discrete variable values
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I Discrete variable w/ continuous parents |

Probability of Buys? given C'ost should be a "soft” threshold:
1

08
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b
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o
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0
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Cost ¢

Probit distribution uses integral of Gaussian:
D(z) = 1o °N(0,1)(x)dx
P(Buys? =true | Cost=c) = ®((—c + u)/0)
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( Why the probit? |

1. It's sort of the right shape

2. Can view as hard threshold whose location is subject to noise
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( Discrete variable contd. |

Sigmoid (or logit) distribution also used in neural networks:

1
?=true | Cost=¢) = ——— ————
P(Buys rue | Cost =c) T e;z‘p(72"g+ y

Sigmoid has similar shape to probit but much longer tails:
1
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( Summary |

Bayes nets provide a natural representation for (causally induced)
conditional independence

Topology + CPTs = compact representation of joint distribution
Generally easy for (non)experts to construct
Canonical distributions (e.g., noisy-OR) = compact representation of CPTs

Continuous variables = parameterized distributions (e.g., linear Gaussian)
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