
Independence from Obfuscation
A Semantic Framework for Diversity

Riccardo Pucella

Joint work with Fred B. Schneider

CSFW
July 2006

1

Why Obfuscation?

Replicated server scenario:
– Attackers exploit

implementation details.
– Defense: replica

independence

Artificially create diversity:
– Relocate/pad runtime stack
– Rearrange basic blocks and

code within basic blocks
– Change system calls or

instruction opcodes
client

replicas

2

Our Goals

Ultimate goal: A precise characterization
of obfuscation as a defense mechanism

Realistic goals:
– Develop models to understand obfuscation
– Determine effectiveness by comparing to

other defenses

3

Obfuscators

Obfuscator T transforms programs P into
morphs T(P,K) using random key K:
– Source-to-source translation
– Object-level binary rewriting
– Compilation under different strategies

Semantics of morph T(P,K): a set of possible
execution histories

4

Attacks on Morphs

Attacks equated with inputs (non-assumption):
– Interface attacks: obfuscation cannot blunt attacks

that exploit the semantics of that (flawed) interface
– Implementation attacks: obfuscation can blunt

attacks that exploit implementation details

 An input is a resistable attack relative to T and
K1,…,Kn if T(P,K1),…,T(P,Kn) behave
differently on that input

 … Depends on what we mean by “differently”

5

Equivalence of Executions

“Differently” is in the eye of the beholder:
– Morphs can perform state changes differently
– Morphs can lay out memory differently
– Morphs can represent data differently

“Differently” captured abstractly using a
relation B
– (σ1,…,σn) ∈ B(P,K1,…,Kn) iff executions σ1,

…,σn have the same behavior
– B need not be an equivalence relation(!)

6

How Effective is Obfuscation?

What attacks are blunted?
– Nobody knows!

What attacks are blunted by typing?
– Another commonly advocated defense

But, type systems and obfuscation seem to defend
against the same kind of attacks…

Type systems =? obfuscation

7

An Exact Type System

For an obfuscator T and keys K1,…,Kn:
– Nonstandard type system that exactly captures

resistable attacks relative to T and K1,…,Kn:
• Before any output, execute the different morphs

and compare outputs before proceeding

Theorem: Type error signaled if and only if
resistable attack relative to T and K1,…,Kn.

8

Dealing with Unspecified Keys

Don’t know in advance the set of keys, or the set
might change (e.g. proactive obfuscation):
– Important to identify attacks relative to unspecified

sets of keys

 A resistable attack relative to T is a resistable
attack relative to T and some finite set of keys

9

A Probabilistic Approximation

1. Choose keys K1, …, Kn at random
2. Use exact type system with keys K1, …, Kn

– Identifies resistable attacks relative to T and K1,…,Kn
– May miss resistable attacks relative to T and other keys
– Some probability of identifying a resistable attack relative

to some finite set of keys

More precise type systems:
 language- and obfuscator-dependent!

10

Example Program:
Buffer Overflows
main(i:int) {
 var x : int;
 buf : int[3];
 x := 99;
 buf[i] := 42;
 print(x);
}

No checks on:
– Pointer arithmetic
– Array reference

On inputs 0,1,2
– Output is 99

On input -1
– Output is 42

11

Example Obfuscation:
Address Randomization
Ensure memory outside a buffer cannot be

accessed reliably [Bhaktar et al. 2003]

Obfuscator Taddr with keys (l0,d,Π,Minit)
– l0: start of stack
– d: padding size
– Π: permutations
– Minit: initial memory

12

Implementation of Calls

Usual stack: Taddr-morphs stack:

arg 1

…

arg n

Return address

local 1

local n

…

arg π(1)

…

arg π(n)

Return address

local π(1)

local π(n)

…

d padding

d padding

d padding

d padding

13

Resistable Attacks for Taddr

main(i:int) {
 var x : int;
 buf : int[3];
 x := 99;
 buf[i] := 42;
 print(x);
}

0,1,2 are not resistable
attacks relative to
Taddr

-1 is a resistable attack
relative to Taddr

14

An Impossibility Result

Earlier: Type systems capture resistable attacks
relative to Taddr and a fixed set of keys.

Theorem: No computable dynamic type system
can signal a type error for an input if and only if
that input is a resistable attack relative to Taddr

The best we can do is approximate

15

Approximation: Strong Typing

Cf. CCured, Cyclone
– Type of direct values (integer)
– Type of pointers (plus allowed range)

Type error: dereferencing a pointer out of range

Theorem: If resistable attack relative to Taddr, then
strong typing signals a type error

16

What Approximation Do We Get?

main () {
 var a : int[5];
 x : int;
 x := a[10];
 print(x);
}

17

What Approximation Do We Get?

main () {
 var a : int[5];
 x : int;
 x := a[10];
 print(x);
}

Appropriately signals a
type error

 Different morphs with
different initial values
in a[10] produce
different outputs

18

What Approximation Do We Get?

main () {
 var a : int[5];
 x : int;
 x := a[10];
 print(0);
}

Still signals a type error

 The value read from
 a[10] has no
observable effect!

But all morphs output 0, so no
resistable attack present.

19

A More Accurate Type System

Track integrity of values by adding new type
– Type low: different value in different morphs
– When dereferencing a pointer out of range, value gets

type low
– PC gets type low if control flow depends on value of

type low

Type error: output depends on a value of type low

Theorem: If a resistable attack relative to Taddr,
then type system signals a type error

20

What Approximation Do We Get?

main() {
 var a : int[5];
 x : int;
 x := a[10];
 if (x=0) then
 print(1);
 else
 print(2);
}

21

What Approximation Do We Get?

main() {
 var a : int[5];
 x : int;
 x := a[10];
 if (x=0) then
 print(1);
 else
 print(2);
}

Appropriately signals a
type error at either of
these points

 Control flow depends
on x, which carries a
value of type low

22

What Approximation Do We Get?

main() {
 var a : int[5];
 x : int;
 x := a[10];
 if (x=x) then
 print(1);
 else
 print(2);
}

Now every morph outputs 1
because x=x is always
true

But signals a type error,
even though no resistable
attack occurs.

Presumably, we can take

care of x=x as a special
case…

23

What Approximation Do We Get?

… but undecidable in
general whether f(x)
always true

 Just a special case of
impossibility theorem

 Key point: limited by
how precisely can
track information flow

main() {
 var a : int[5];
 x : int;
 x := a[10];
 if (f(x)) then
 print(1);
 else
 print(2);
}

24

Conclusions

• Initiated a theoretical study of obfuscation as a
defense mechanism
– In particular, compared with type systems

• We have ignored the probabilities!
– In practice, probabilities matter

• What’s the probability that an attack is blunted?

– Depend on how much diversity is introduced by
obfuscation

– Seem difficult to obtain

25

Type Systems vs Obfuscation

• Type systems:
– Prevent attacks (always - not just probably)
– If static, add no run-time cost
– Not always part of the language

• Obfuscation:
– Works on legacy code
– Doesn’t always defend

26

