
Review of
The π-calculus: A Theory of Mobile Processes∗

Riccardo Pucella

Department of Computer Science
Cornell University

July 8, 2001

Introduction

With the rise of computer networks in the past decades, the spread of distributed applications with components across
multiple machines, and with new notions such as mobile code, there has been a need for formal methods to model
and reason about concurrency and mobility. The study of sequential computations has been based on notions such
as Turing machines, recursive functions, theλ-calculus, all equivalent formalisms capturing the essence of sequential
computations. Unfortunately, for concurrent programs, theories for sequential computation are not enough. Many
programs are not simply programs that compute a result and return it to the user, but rather interact with other programs,
and even move from machine to machine.

Process calculi are an attempt at getting a formal foundation based on such ideas. They emerged from the work of
Hoare [4] and Milner [6] on models of concurrency. These calculi are meant to model systems made up of processes
communicating by exchanging values across channels. They allow for the dynamic creation and removal of processes,
allowing the modelling of dynamic systems. A typical process calculus in that vein is CCS [6, 7]. Theπ-calculus
extends CCS with the ability to create and remove communication links between processes, a new form of dynamic
behaviour. By allowing links to be created and deleted, it is possible to model a form ofmobility, by identifying the
position of a process by its communication links.

This book, “Theπ-calculus: A Theory of Mobile Processes”, by Davide Sangiorgi and David Walker, is a in-depth
study of the properties of theπ-calculus and its variants. In a sense, it is the logical followup to the recent introduction
to concurrency and theπ-calculus by Milner [8], reviewed in SIGACT News, 31(4), December 2000.

What follows is a whirlwind introduction to CCS and theπ-calculus. It is meant as a way to introduce the notions
discussed in much more depth by the book under review. Let us start with the basics. CCS provides a syntax for writing
processes. The syntax is minimalist, in the grand tradition of foundational calculi such as theλ-calculus. Processes
perform actions, which can be of three forms: the sending of a message over channelx (written x), the receiving of
a message over channelx (written x), and internal actions (writtenτ), the details of which are unobservable. Send
and receive actions are calledsynchronizationactions, since communication occurs when the corresponding processes
synchronize. Letα stand for actions, including the internal actionτ , while we reserveλ, µ, . . . for synchronization
actions.1 Processes are written using the following syntax:

P ::= A〈x1, . . . , xk〉 |
∑
i∈I

αi.Pi | P1|P2 | νx.P

We write 0 for the empty summation (whenI = ∅). The idea behind process expressions is simple. The process
0 represents the process that does nothing and simply terminates. A process of the formλ.P awaits to synchronize

∗D. Sangiorgi, D. Walker,Theπ-calculus: A Theory of Mobile Processes, Cambridge University Press, 2001, 580pp, ISBN 0521781779.
1In the literature, the actions of CCS are often given a much more abstract interpretation, as simply names and co-names. The send/receive

interpretation is useful when one moves to theπ-calculus.

1

with a process of the formλ.Q, after which the processes continue as processP andQ respectively. A generalization
of such processes is

∑
i∈I αi.Pi, which nondeterministically synchronizes via one of itsαi only. We will write∑

i∈I αi.Pi asα1.P1 + · · · + αn.Pn when the setI is {1, . . . , n}. To combine processes, the parallel composition
P1|P2 is used. Note the difference between summation and parallel composition: a summation offers a choice, so only
one of the summands can synchronize and proceed, while a parallel composition allows all its component processes
to proceed. (This will be made clear when we get to the transition rules describing how processes execute.) The
process expressionνx.P defines a local channel namex to be used within processP . This name is guaranteed to
be unique toP (possibly through consistent renaming). Finally, we allow process definitions, where we assume that
every identifierA is associated with a process definition of the formA(x1, . . . , xk) = PA wherex1, . . . , xk are free
in PA. To instantiate the processA to valuesy1, . . . , yk, you writeA〈y1, . . . , yk〉.

As an example, consider the process(x.y.0 + x.z.0)|x.0|y.0. Intuitively, it consists of three processes running in
parallel: the first offers of choice of either receiving over channelx, or sending over channelx, the second sends over
channelx, and the third sends over channely. Depending on which choice the first process performs (as we will see,
this depends on the actions the other process can perform), it can continue in one of two ways: if it chooses to receive
on channelx (i.e., thex.y.0 summand is chosen), it can then receive on channely, while if it chooses to send onx
(i.e., thex.z.0 summand is chosen), it can then receive on channelz.

To represent the execution of a process expression, we define the notion of a transition. Intuitively, the transition
relation tells us how to perform one step of execution of the process. Note that since there can be many ways in which
a process executes, the transition is fundamentally nondeterministic. The transition of a processP into a processQ by
performing an actionα is indicatedP

α−→ Q. The actionα is the observation of the transition. (We will sometimes
simply use−→ when the observation is unimportant.) The transition relation is defined by the following inference
rules: ∑

i∈I αi.Pi
αj−→ Pj

for j ∈ I P
λ−→ P ′ Q

λ−→ Q′

P |Q τ−→ P ′|Q′

P
α−→ P ′

νx.P
α−→ νx.P ′ if α 6∈ {x, x} P

α−→ P ′

P |Q α−→ P ′|Q

{~y/~x}PA
α−→ P ′

A〈~y〉 α−→ P ′ if A(~x) = PA
Q

α−→ Q′

P |Q α−→ P |Q′

For example, consider the transitions of the example process above,(x.y.0 + x.z.0)|x.0|y.0. A possible first
transition (the first step of the execution, if you wish), can be derived as follows:

x.y.0 + x.z.0 x−→ y.0 x.0 x−→ 0

(x.y.0 + x.z.0)|x.0 τ−→ y.0|0
(x.y.0 + x.z.0)|x.0|y.0 τ−→ y.0|0|y.0

That is, the process reduces toy.0|0|y.0 in one step that does not provide outside information, since it appears as an
internal action. Note that the0 can be removed from the resulting process, as it does not contribute further to the
execution of the process. The resulting processy.0|y.0 can then perform a further transition, derived as follows:

y.0
y−→ 0 y.0

y−→ 0

y.0|y.0 τ−→ 0|0

In summary, a possible sequence of transitions for the original process is the two-step sequence

(x.y.0 + x.z.0)|x.0|y.0 τ−→ y.0|y.0 τ−→ 0.

A central concept in the study of processes is that of equivalence of processes. We have in fact implicitly used
a notion of equivalence in the example above, when we removed processes of the form0 from parallel processes.

2

Many notions of equivalence can be defined, capturing the various intuitions that lead us to think of two processes as
equivalent. A standard notion of equivalence is strong bisimulation. A strong bisimulation is a relationR such that
wheneverPRQ, if P

α−→ P ′, then there existsQ′ such thatQ
α−→ Q′ andP ′RQ′, and ifQ

α−→ Q′, then there exists
P ′ such thatP

α−→ P ′ andP ′RQ′. We sayP andQ are strongly bisimilar if there exists a strong bisimulationR
such thatPRQ. In other words, ifP andQ are strongly bisimilar, then whatever transitionP can take,Q can match
it with one of its own that retains all ofP ’s options, and vice versa.

Strong bisimulation is a very fine equivalence relation—not many processes end up being equivalent. More wor-
ryingly, strong bisimulation does not handle internal actions very well. Intuitively, process equivalence should really
only involve observable actions. Two processes that only perform internal actions should be considered equivalent. For
instance, the processesτ.τ.0 andτ.0 should really be considered equivalent, as they really do nothing after performing
some internal (and hence really unobservable) actions. Unfortunately, it is easy to check that these two processes
are not strongly bisimilar. To capture this intuition, we define a weaker notion of equivalence, aptly called weak
bisimulation.

Let P =⇒ Q denote thatP can take any number of transitions before turning intoQ. In other words,P =⇒ Q
holds if P −→ · · · −→ Q, i.e.,=⇒ is the reflexive transitive closure of−→. We writeP

α=⇒ Q if P =⇒ P ′ α−→
Q′ =⇒ Q, i.e., if P can take any number of transitions before and after doing anα-transition. A weak bisimulation is

a relationR such that wheneverPRQ, if P
τ−→ P ′ then there existsQ′ such thatQ =⇒ Q′, while if P

λ−→ P ′ then

there existsQ′ such thatQ
λ=⇒ Q′, and vice versa forQ. We say thatP andQ are weakly bisimilar if there exists a

weak bisimulationR such thatPRQ. If P andQ are weakly bisimilar, an internal transition byP can be matched by
zero or more transitions byQ, while anα-transition byP can be matched by one or more transition byQ as long as
one such is anα-transition, and vice versa. One can check that a strong bisimulation is a weak bisimulation, but the
converse does not hold: weak bisimilarity is a coarser equivalence relation.

In the framework above, we cannot communicate any value at synchronization time. It is not difficult to extend the
calculus to allow for the exchange of values such as integers over the channel during a synchronization. Doing so does
not fundamentally change the character of the calculus. A variation on this, however, does change the calculus in a
highly nontrivial way, and that is to allow for the communication of channel names during synchronization. This yields
theπ-calculus. To see why such an extension might be useful, consider the following scenario. It shows that passing
channel names around can be used to model process mobility. Intuitively, a process is characterized by the channels
it exposes to the world, that can be used to communicate with it. These channels act as an interface to the process.
Hence, the processP = (x.y.0|x.z.0) provides the channelx as an interface. A process that sendsx to another process
in some sense sends the capability to accessP to that process. This captures the mobility of processP , although more
accurately it captures the mobility of the capability to accessP . It was Sangiorgi’s original contribution to the theory
of theπ-calculus to show that capability mobility could indeed express in a precise sense process mobility [9]. (This
particular topic is covered in Part V of the book.)

The necessary modifications to the calculus that capture the above intuition are straightforward. Syntactically, we
need to change the kind of guards that can appear in summands. Sends now must carry a value, and receives must
accept an identifier to be bound to the received value. The only values that can be exchanged are channel names. We
define a prefixπ to be of the following form:

π ::= x〈y〉 | x(y) | τ

Here,x andy are channel names, andτ is the internal action. Processes are described by the following syntax, where
the only difference from CCS is in the summations:

P ::= A〈x1, . . . , xk〉 |
∑
i∈I

πi.Pi | P1|P2 | νx.P

The intuition behind the new prefixes should be rather clear: as before, a process of the formτ.P performs an internal
actionτ before becomingP ; a process of the formx〈y〉.P is ready to send the channel namey onto channelx, and
when this process synchronizes it behaves asP ; a process of the formx(y).P is ready to receive a channel name from
channelx, and when this process synchronizes, it binds the received channel to the identifiery in P before continuing
as the (modified)P . Note that the calculus in Sangiorgi and Walker’s book is slightly different than the one presented
here, which has been kept simple for reasons of exposition.

3

As an example of a process in theπ-calculus, consider the processx(y).y〈z〉.0|x〈w〉. Intuitively, the second
process sends channel namew via channelx to the first process, who binds it to namey. The first process then sends
channel namez over this channel. Hence, the above process “reduces” to the processw〈z〉. Although the intuition
underlying passing channel names over channels should be clear, it turns out that formalizing this in a nice way
is difficult. Already describing the transition relation (in the form we gave above) is complicated by the fact that we
cannot simply consider channel names, but also need to take into account the information exchanged at synchronization
time. Similarly, describing the appropriate notion of bisimulation in such a setting needs to account for the information
exchanged. Rather than describing these, I will defer to Sangiorgi and Walker’s book, since in a sense this is exactly
where the book picks up.

The book

The book splits into seven parts. Each parts comprises between two and three chapters, and deals with a particular
aspect of theπ-calculus.

Part I,The π-calculus, is made up of two chapters. Chapter 1 introduces the basic concepts of theπ-calculus,
starting from the syntax, and defines two notion of system behaviour. The first notion, called reduction, can be
understood as a simplified account of what we described above. Essentially, reduction tells you how a term rewrites
upon execution, without keeping track of the actions performed by the process. This notion of behaviour has the
advantage of being simple and intuitive. The second notion of behaviour, in terms of labelled transition, follows the
account I gave in the introduction. The relationship between these two notions is made explicit.

Behavioural equivalence of processes occupies a central part in the theory, and an initial take on the problem is
given in Chapter 2. Many notion of equivalence can be defined for theπ-calculus, and the fundamental ones are
studied in this chapter. The main form of equivalence, barbed congruence, is defined naturally by specifying that
no difference between equivalent processes can be observed by placing them into an arbitraryπ-calculus context.
This natural notion of equivalence turns out to be awkward to work with, and definitions based on ideas similar to
bisimilarity given above can be introduced. It turns out that strong bisimilarity defined in the most natural way is
equivalent to barbed congruence for theπ-calculus. (This equivalence however fails when extensions to theπ-calculus
are considered in Parts IV and V, where barbed congruence remains the natural notion of equivalence.)

Part II,Variations of the π-calculus, is made up of three chapters. Chapter 3 studies various simple modifications
to the basicπ-calculus framework given in Part I. A variant of theπ-calculus, the polyadicπ-calculus, is introduced,
where tuples of names can be passed at synchronization time. Adding tuples in such a way forces the introduction of
sorts, which intuitively ensure that synchronizing terms agree as to the number of names that are being exchanged.
This can be viewed as a primitive form of typing for theπ-calculus. The second variation considers the addition of
recursive definitions to theπ-calculus. These variations are minor in the sense that they do not add expressive power:
anything that can be expressed using tuples or recursive definitions can already be expressed in the basicπ-calculus of
Part I.

Chapter 4 returns to behavioural equivalence. New notions of equivalence are defined, such as ground, late, and
open bisimilarity. Roughly speaking, these new bisimilarity definitions ease the demand on the processes to mimic
one another’s input actions. The main advantage of these equivalences is that they are easier to establish than the
more natural notions of equivalence, a recurring concern, especially in the context of automatic tools for reasoning
about processes. After studying these new equivalence relations, the question of axiomatizing these equivalences
is addressed. An axiomatization for an equivalence relation on processes is a set of equational axiom on process
expressions that, together with the rules of equational reasoning (i.e., reflexivity, transitivity, etc.), suffice for proving
exactly the valid equations between process expressions, with respect to the equivalence under consideration.

While the variants of theπ-calculus examined in Chapter 3 are extensions that do not change the expressive power
of the calculus, Chapter 5 studies restrictions to the calculus that lend insight into various phenomena of interaction
and mobility. The asynchronousπ-calculus restricts terms that perform a send action to be of the formx〈y〉.0, that is,
to become the null process after synchronization. This can be used to capture a form of asynchrony, and the resulting
calculus is provably less expressive than the fullπ-calculus. The localizedπ-calculus has essentially the restriction
that a name received by a process cannot be used as an input channel—it must be either used for sending, or sent to
another process. Hence, all input channels are localized in the process in which they are defined. Finally, the private

4

π-calculus imposes the restriction on theπ-calculus that local names cannot be exported, that is, they cannot be sent to
a process outside of the scope of theν where the channel is defined. For all these subcalculi, notions of equivalences
are studied.

Part III, Typed π-calculi, explores the issue of assigning types toπ-calculus expressions. This part is mostly
concerned with defining type systems to detect errors statically, or to enforce properties statically. (The following
part focuses on types as an aid for reasoning about the behaviour of processes.) In Chapter 6, the foundations of type
systems for theπ-calculus are laid. The Base-π calculus is introduced, essentially CCS extended with the capability
of passing values at synchronization time. The types are associated with those values. Channels are also given a type,
stating the type of value they carry. Processes themselves are also given a type, all processes getting the same type.
The simply-typedπ-calculus is obtained by adding channel names to the values that can be exchanged, and modifying
the type system accordingly.

Chapter 7 extends the basic type system of the simply-typedπ-calculus with the notion of subtyping. In order for
this to be nontrivial, the calculus is refined to differentiate, in the type of channels, whether or not the channel is an
input channel (used for receiving values) or an output channel (used for sending values). We can then refine the type
system to account for subtyping: if we have an output channel that can send values of typeS, then clearly we can also
use the channel to send values of any subtype ofS. Various properties of subtyping are examined.

The type systems described above are fairly standard. In Chapter 8, more advanced type systems are investigated.
These are meant to capture various properties of processes that we may want to enforce. For instance, it is possible
to deal with linearity constraints in the type system, for example, that a given channel name can only be used once
for input or output. Another property is that of receptiveness, that is, that a given channel name is always ready to
process some input, or equivalently that sending a value on that channel will never deadlock. Another property is
polymorphism, namely the fact that some processes don’t really care about the actual type of the value they process.
An example of such a process is one that simply forwards a value from one channel to another. Type systems to capture
these properties are defined and studied.

Part IV, Reasoning about processes using types, explores another advantage of type systems beyond static
enforcement, that of helping reasoning about behavioural properties of processes. The three chapters in this part
mirror those of Part III. Specifically, Chapter 9 discusses how types can help in reasoning. The example examined
in the chapter is that of a security property, specifically that a given name always remains private to a given process.
Behavioural equivalences on typed processes are investigated. In Chapter 10, reasoning about typed processes in the
context of subtyping with input and output channels (as introduced in Chapter 7) is investigated, with an application
towards the asynchronousπ-calculus. Process equivalence in the presence of input and output channel types is then
studied. In Chapter 11, a similar development is done for type systems capturing linearity, responsiveness, and
polymorphism.

Part V, The higher-order paradigm, provides an in-depth study of the notion of mobility. As we saw in the
introduction, mobility in theπ-calculus is modeled by allowing channel names to be sent and received via channels.
This is also called name-passing (or first-order). A more concrete approach to mobility is to allow the ability for
processes to send and receive entire processes, an approach called process-passing (or higher-order). Mathematically,
name-passing is much simpler than process-passing. On the other hand, process-passing is a more intuitive way to
model mobility. It turns out that allowing process-passing does not add to the expressive power of theπ-calculus,
that is, anything expressible using process-passing is already expressible using name-passing. To make this formal,
Chapter 12 introduces a higher-order typedπ-calculus, HOπ, and develops its basic theory. The idea is to define the
notion of a process abstraction that can be communicated across channels. In Chapter 13, it is shown how to translate
HOπ into theπ-calculus in a satisfactory way. Intuitively, the communication of a process abstraction translates into
the communication of access to that abstraction. The translation is such that it reflects and preserves the equivalence of
processes: two terms in the higher-order language are equivalent if and only their respective translations are equivalent,
using the appropriate notions of equivalence.

The last two parts of the book address the relevance of theπ-calculus to the theory of programming languages.
Part VI, Functions as processes, explores the relation between theλ-calculus, a standard calculus for modeling
sequential computations, and theπ-calculus. It turns out that it is possible to encode theλ-calculus in theπ-calculus,
essentially turning the functions of theλ-calculus into processes that accept a value on a preselected input channel
(the parameter channel), and returns a value on a preselected output channel (the result channel). In Chapter 14, the

5

relevant theory of theλ-calculus is reviewed. The reader is expected to have had prior exposure to this topic, as the
treatment is fast. In Chapter 15, the basic encoding is presented, which essentially amounts to a transformation of
λ-terms into continuation-passing style, where each function takes an extra functional argument (the continuation)
to which the result of the function call is passed. Different encodings can be given, corresponding to the different
reductions strategies possible for theλ-calculus (call-by-name, call-by-value, etc...). Chapter 16 does the same for the
typedλ-calculus. Chapters 17 and 18 explore properties of a particular encoding, that of the untyped call-by-name
λ-calculus. The property of interest is that of the equality relation induced onλ-terms when their respective encodings
are behaviourally equivalent as processes (according to different notions of process equivalences, but mostly barbed
congruence).

Part VII, Objects andπ-calculus, develops the relationship between theπ-calculus and object-oriented program-
ming. The intuitive similarities between these may not be completely clear at first glance, until one describes object-
oriented systems as made up of objects that interact by invoking each other’s methods, a procedure akin to sending
messages. In Chapter 19, this is made manifest by introducing a simple object-oriented programming language, OOL,
and by showing how to give it a semantics by translation to theπ-calculus. In Chapter 20, some formal properties
of OOL are examined, illustrating the use ofπ-calculus techniques in reasoning about objects. For example, one can
check the correctness of certain program transformations, or the implementation of objects by separating code shared
between instances of an object and data private to each instance.

Opinion

The basic recommendation I have is that anyone with a technical interest in theπ-calculus needs this book. It brings
together much of what is know about the calculus, information that for the most part can only be found in technical
research articles. As such, it should remain thede factoreference work on theπ-calculus for a great many years to
come. I will even go as far as predicting that it will play the same role for theπ-calculus that Barendregt’s seminal
book [1] plays for theλ-calculus.

It should be emphasized, however, that this is a reference book, not a textbook. It requires a good level of
mathematical maturity, and furthermore, it requires prior exposure to the problems intrinsic to modeling concurrent
systems, as well as the motivation underlying the process calculi approaches to those problems. Because of this,
prior to reading the book, the neophyte should really first read Milner’s own introduction to theπ-calculus (in fact,
to process calculi in general, and CCS in particular). Milner’s original book on concurrency [7] is also suitable as an
introduction to the material.

The need for a good reference for the basic theory of theπ-calculus is clear when one looks at current work based
on process calculi. Systems based on or inspired by theπ-calculus are being used to study various aspects of security,
for instance. The Ambient Calculus of Cardelli and Gordon [2] aims at modeling and reasoning about the notion of
a locale in which computations execute, and in and out of which computations can move; the Spi-calculus of Gordon
and Abadi [3] aims at modeling and reasoning about cryptographic protocols; the type system for processes developed
by Honda et al. [5] aims at restricting statically the kind of information flowing from processes deemed high-security
to processes deemed low-security.

References

[1] H. P. Barendregt.The Lambda Calculus, Its Syntax and Semantics. Studies in Logic. North-Holland, Amsterdam,
1981.

[2] L. Cardelli and A. D. Gordon. Mobile ambients.Theoretical Computer Science, 240(1):177–213, 2000.

[3] A. D. Gordon and M. Abadi. A calculus for cryptographic protocols: The Spi calculus. In4th ACM Conference
on Computer and Communications Security, 1997.

[4] C. Hoare.Communicating Sequential Processes. Prentice-Hall, 1985.

6

[5] K. Honda, V. Vasconcelos, and N. Yoshida. Secure information flow as typed process behaviour. InEuropean
Symposium on Programming, volume 1782 ofLecture Notes in Computer Science, pages 180–199. Springer-
Verlag, 2000.

[6] R. Milner. A Calculus of Communicating Systems. Number 92 in Lecture Notes in Computer Science. Springer-
Verlag, 1980.

[7] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[8] R. Milner. Communicating and Mobile Systems: Theπ-calculus. Cambridge University Press, 1999.

[9] D. Sangiorgi. Expressing mobility in process algebras: first-order and higher-order paradigms. PhD thesis,
Department of Computer Science, University of Edinburgh, 1993. CST-99-93, also published as ECS-LFCS-93-
266.

7

