
Towards a Formalization for COM
Part I: The Primitive Calculus

Riccardo Pucella
Department of Computer Science

Cornell University
Ithaca, NY 14853

riccardo@cs.cornell.edu

ABSTRACT
We introduce in this paper a typed calculus intended to capture
the execution model of COM. The innovation of this calculus is to
model very low-level aspects of the COM framework, specifically
the notion of interface pointers. This is handled by specifying
an allocation semantics for the calculus, thereby modeling heap
allocation of interfaces explicitly. Having an explicit way of talking
about interface pointers allows us to model in a reasonable way the
notions of interface sharing and object identity. We introduce a
type system that can be used to disambiguate between specifica-
tion and implementation of interfaces. The type system moreover
can capture a notion of COM conformance, that is, the legality
of COM components. We discuss extensions of the calculus to
handle subtyping of interfaces, dynamic interface negotiation and
aggregation.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and Fea-
tures—Modules, packages; F.3.3 [Logics and Meanings of Pro-
grams]: Studies of Program Constructs; D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative languages, Object-
oriented languages

General Terms
Design, Languages

Keywords
COM, components, interfaces, calculus, formalism, type system

1. INTRODUCTION
TheComponent Object Model(COM), introduced by Microsoft

in 1995, is an architectural model intended to promote the safety,
interoperability, and distribution of largely-independent units of func-
tionality [4, 10]. The driving idea was to provide a simple model

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’02,November 4-8, 2002, Seattle, Washington, USA.
Copyright 2002 ACM 1-58113-417-1/02/0011 ...$5.00.

that could be used to build more advanced infrastructures for appli-
cation development. The work on COM emerged from an attempt
at isolating the core mechanisms of OLE, theObject Linking and
Embeddinginfrastructure used by the Windows operating system
to manage document-centric abstractions [1].

The basis of the COM model is the notion ofinterface. One
can think of an interface as a view on a given “object”, namely the
instance of a component. For example, a spell-checking component
instance may have a dictionary view that allows it to be accessed
as a dictionary. Through this view, one can query the instance for
the words it knows. Another view of this component may be a
spell-checking view, that can perform the actual spell-checking of
a document. What makes the COM framework interesting is that
these interfaces are essentially independent of each other! Each
interface presents various functions that can be called, and different
interfaces for a given component instance need not even share state.
However, to maintain the illusion that these interfaces are views of
an underlying “object”, COM imposes requirements on interfaces,
such as the requirement that given any view of an “object”, we can
get at any of the others views, and so on.

Although one of the goal was to have a simple model, by forcing
as little structure as possible, it has proved surprisingly difficult
to formalize. Subtleties in the interpretation of the model have
recently arisen, pointing to the need for such a formalization. For
instance, recent results by Sullivan, Marchukov, and Socha [15]
highlight unexpected interactions between two core mechanisms
of COM, interface negotiation and aggregation. These interac-
tions invalidate a naive reading of the COM specification. One
must realize that these are not even the most complicated protocols
in COM, compared with issues such as security, licensing, mar-
shalling, remote objects and especially threading models. This is
compounded by the fact that the ideas underlying COM have been
adopted by other frameworks, such as the XP-COM framework
used in Mozilla, and are being carried over to the .NET framework
from Microsoft.

Why is it so hard to reason about COM? The COM specification
[4] describes the model in terms of how implementations should
behave, and does so by specifying rules that guarantee good be-
havior. One problem is that the required behavior is described as a
mix of specifications and a reference implementation in an object-
oriented language such as C++. It is not clear, for example, how
much the specifications and rules of usage rely on the reference
implementation. Moreover, the specification does not lend itself
well to the verification that the rules actually enforce good behav-
ior. As we mentioned, formalizations that have emerged since the
COM specification was “published” have already exhibited subtle
interactions between the rules [15].

In this paper, we introduce a framework to reason about the in-
teraction between the rules and the effect of the rules on programs.
This is achieved by capturing the execution model of COM via a
primitive typed calculus,λCOM, executing over an abstract machine
that models the system at the level of interfaces, through explicit
interface pointers. Essentially, we explicitly model allocation of
new interfaces in a “heap”. This allows us to express notions such
as interface identity, required to define the identity of components.
The key feature of our calculus is its type system, which stati-
cally determines if a component and its set of interfaces is COM
conformant. Roughly speaking, a COM component is said to be
conformant (or legal) if it satisfies the COM rules of usage. Recent
research by Sullivan and Marchukov [14] suggests that the notion
of COM conformance cannot be fully captured statically, and one
goal of our project is to examine the exact implications of such
research.

Various approaches have attempted to formalize the COM frame-
work, including the aforementioned research [14, 15], as well as
calculi-based methods such as COMEL [2]. None of these ap-
proaches capture the computational model accurately. The con-
cepts underlying COM appear intuitive, but turn out to be subtle.
The aim of this project is to attempt to provide a semantic founda-
tion for the study of the component technology underlying COM,
from a programming language semantics point of view.

The rest of this paper is structured as follows. We give an overview
of COM in Section 2, at the level required to understand our work.
In Section 3 we introduce our calculus,λCOM, and the type system
enforcing COM conformance. In Section 4, we present the opera-
tional semantics of the calculus. In Section 5, we point out natural
extensions of our work. We review related work in Section 6, and
then conclude with a discussion of our design decisions and future
work. The proof of our technical results have been relegated to the
full paper.

2. THE COMPONENT OBJECT MODEL
COM is an architectural model based on largely-independent

units of functionality calledcomponents. COM components are
binary objects: machine code and data laid out in memory and
behaving according to the rules of COM. To provide access to
its functionality, a component implements one or moreinterfaces.
An interfaceis itself a binary structure, whose layout is specified
by the COM framework. Precisely, an interface is a pointer to
a table of pointers to functions of the component (theinterface
table). Typically, the functions provided through an interface are
semantically related. For instance, they may implement a specific
service. The only way for client code to access the code of a
component is through one of those interfaces.

Consider the following classical example of a component, one
that performs spell-checking duties. Such a component may have
two interfaces:ISpell, to perform spell-checking, andIDictionary,
to access the underlying dictionary. TheISpell interface would
allow one to spell-check a piece of text, while theIDictionary in-
terface would contain functions to update the dictionary, such as
adding new words, or alternate spellings.

The typeof an interface is the list of operations it supports, and
their order (as implemented in the interface table), along with the
types of its operations. An interface caninherit from another in-
terface, which simply says that it provides all the functions of that
other interface, and maybe additional ones as well. Every interface
is required to ultimately inherit fromIUnknown, which is a special
interface in COM. TheIUnknown interface specifies three func-
tions: QueryInterface, AddRef, andRelease. These functions are
the core COM mechanisms for interface negotiation and memory

management. We will not be concerned with memory management
issues in this paper.

Interface negotiation through theQueryInterfacefunction is the
only way in which one can use components. Recall that due to
encapsulation, a component can only be accessed through one of
its interfaces. This begs the question of how one gets a hand on
an interface to a component. The answer is that one can query a
component for an interface, throughQueryInterface. SinceQuery-
Interface is specified byIUnknown, from which every interface
must inherit, every interface in every component must implement
QueryInterface. In essence, if one has an interface to a component,
one can get another interface to a component. To understand query-
ing, one must understand the naming scheme for interfaces. Until
now, we have described interfaces using mnemonic names such as
IDictionary. In truth, every interface has an associatedinterface
identifier, or IID. This IID uniquely identifies the type of the inter-
face. Any interface with a given IID must implement exactly the
functions specified by the type associated with the IID. Any new
interface not corresponding to an existing interface identifier must
be assigned such an identifier by the creator of the interface, as part
of the design of the interface. The IID carries some “semantic”
meaning. For instance, there may be an IID reserved for interfaces
to dictionaries used by spell-checkers, with exactly the same type
as provided by another IID reserved for interfaces to dictionaries
used by natural language processors. The IID is what one queries
for when callingQueryInterface. When one queries a component
for an interface with the given IID, either the call succeeds and one
gets a pointer to the requested interface (i.e., a pointer to a table
of function pointers), or the call fails with an indication that such
an interface is not available. Note two things: there need not be
a unique interface with a given IID implemented by a component;
the component is free to choose which interface pointer to return.
Second, to query a component for an interface, one needs to know
the interface IID one is interested in. COM does not provide any
mechanism through which one can ask a component about the in-
terfaces it provides. The intuition is that this information would
be useless to a client unless it was programmed to handle such
interfaces, in which case it can simply query for them.

In summary, to get an interface of a component, one needs to call
QueryInterfacethrough another interface of a component. How
does one get an initial interface to a component? When one creates
a component (on Win32 systems, this is done through a call to the
Win32 functionCoCreateInstance), one specifies the initial inter-
face one wants on the component. Note that every component is
required to implement at least one specific interface, namelyIUn-
known, and thus one can always query for it at creation time. Re-
call thatIUnknownsimply provides aQueryInterfaceand memory
management functions. (COM imposes obligations with respect
to IUnknown in two distinct ways: every interface must inherit
from IUnknown, and every component must support theIUnknown
interface directly.)

The QueryInterfacemechanism is purely local: from a given
interface, one can query for other interfaces. To be usable, a com-
ponent must impose restrictions on the ways in whichQueryInter-
faceas implemented by the interfaces behaves. TheQueryInterface
functions in a component must have the following properties:

1. Stability. If at some point, aQueryInterfaceon some inter-
face for an interface with IIDI succeeds, then every subse-
quent call toQueryInterfaceon that interface requesting an
interface with IIDI must also succeed. Similarly, if at some
point, aQueryInterfaceon some interface for an interface
with IID I fails, then every subsequent call toQueryInterface
on that interface requesting an interface with IIDI must fail.

types τ ::= int | τ1 → τ2 | [I, ι] | [ι]
interface types ι ::= 〈I1:ι1, . . .〉t | α | µi(α1, . . . , αn).(ι1, . . . , ιn)
tags t ::= i | ⊥

declarations d ::= x | 〈I | l1=e1, . . . | I1←d1, . . .〉 | rec x1=d1, . . . in d
values v ::= i | λx:τ.e | ` | component(`)
expressions e ::= x | i | λx:τ.e | e1 e2 | e.l | e#I | e# |

rec x1=d1, . . . in e | unroll ι (e) |
〈I | l1=e1, . . . | I1←e′1, . . .〉 | component(e)

Figure 1: λCOM syntax

2. Reflexivity. A QueryInterfacefrom an interface with IIDI
for an interface with IIDI always succeeds.

3. Symmetry. If a QueryInterfacefrom an interface with IIDI
for an interface with IIDI ′ succeeds, then aQueryInterface
on the resulting interface for an interface with IIDI must
succeed.

4. Transitivity. If a QueryInterfacefrom an interface with IID
I for an interface IIDI ′ succeeds, and aQueryInterfaceon
the resulting interface for an interface with IIDI ′′ succeeds,
then aQueryInterfacefrom the original interface for an in-
terface with IIDI ′′ must also succeed.

These properties say nothing about whether the returned interface
pointers are the same. In general, it need not be the case that
querying for a given interface from two different interfaces returns
the same interface pointer. This flexibility allows components to
optimize table layouts, and even to reduce network communication
in the case of distributed components.

The only case where the component is required to return the
same pointer to an interface is when an interface of the component
is queried forIUnknown. This leads to the following rule:

5. Uniqueness. Querying any interface of a component for
IUnknownmust succeed and always return the same pointer.

This uniqueIUnknownpointer can be used to define a notion of
component identity: two interfaces are interfaces of the same com-
ponent if querying them forIUnknownreturns the same pointer.

Component composition, that is, creating new components from
old, is handled in COM in one of two ways, namely containment
and aggregation. The only such way we address in this paper is con-
tainment. Containment is straightforward: a componentC1 (called
the outer component) is said tocontaina componentC2 (called the
inner component) ifC1 usesC2 in its implementation. In other
words,C1 is a client ofC2. The only requirement for containment
is that upon creation, the outer component should create the inner
component. We will not deal with aggregation in this paper, as it
introduces complexities of its own. We will discuss aggregation in
Section 5.

3. THE λCOM CALCULUS
In this section, we introduce theλCOM calculus, a statically-

typed language that models COM at the level of the pointer-based
implementation of interfaces. The calculus is a functional calculus
based on the call-by-value simply-typedλ-calculus. After present-
ing the model of the calculus, we explain and motivate the main
constructs and typing rules, and discuss how we capture COM
conformance.

3.1 The model
The cursory look at COM in Section 2 illustrates the fact that

interfaces are the core elements of the COM infrastructure. Our
calculus is based on the following very general view of interfaces.
Interfaces, as we saw, can be understood as records, in that each
interface contains fields that contains values. Each interface is
associated an IID, describing the fields it contains. Moreover, each
interface islinked to other interfaces, where the link is labelled by
the IID of the target interface. Intuitively, querying an interfacei
for an interface with IIDI means returning the interface obtained
by following the link labelledI. Note that there is no sharing
of structure—each interface is its own record, distinct from other
interfaces (although of course they can be linked). Hence, we avoid
conflating issues of inheritance in the model. Another thing to
note is that this approach encodes a particular “implementation” of
theQueryInterfacemechanism. Querying for an interface is done
by table lookup. One cannot, within the model, specify that the
interface to be returned as a result of a particularQueryInterface
depends on runtime values. We will see later in this section where
this restriction comes in handy. In Section 7, we will revisit this
particular assumption.

It goes without saying that different interfaces can link to com-
mon interfaces, and that linking can lead to cycles among inter-
faces. To account for all these aspects, we introduce the notion
of a heap, where interfaces are stored. Each stored interface gets
anaddressand accessing interfaces is done by going through their
address. Hence, the label of an interface can be understood as a
pointer to an interface. Interfaces in this model can be seen as a
directed graph structure. The heap is simply a representation of
that graph. What is a component instance in such a setting? An
instance is aconnected component(in the graph-theoretic sense) of
this graph structure. Given such a description, it is not particularly
relevant what an instance is: any interface in the connected com-
ponent can be seen as a “handle” to the component. Unfortunately,
this approach allows us to describe connected components that do
not behave the way COM components should behave. Specifically,
the rules of behavior of Section 2 are not enforced by this model.
For example, querying any interface in a connected component for
an IUnknown interface need not always yield the same interface
as a result, violating theIUnknownproperty of COM components.
Therefore, we enforce statically the COM conformance of com-
ponents in our type system, by identifying a specific interface as
the “official entry point” into the component. Not surprisingly, this
entry point will be the commonIUnknown interface required by
COM conformance!

3.2 The language
The calculus is an extension of the simply-typedλ-calculus. The

full syntax is given in Figure 1. The types for the values in the
calculus are given as follows:

τ ::= int | τ1 → τ2 | [I, ι] | [ι]
ι ::= 〈I1:ι1, . . .〉t | α | µi(α1, . . . , αn).(ι1, . . . , ιn)

The typesτ comprise the base type int, as well as functional types
τ1 → τ2. The type[I, ι] denotes the type of an interface. In-
terfaces are first-class, in that they can be passed to and returned
from functions. As we noted above, an interface is essentially a
record, and is moreover linked to other interfaces. The type for
interfaces reflects that structure. First, we need to assume a set IIDS
of interface identifiers, and letI1, I2, . . . range over elements of
IIDS. We also assume a functionI taking an interface identifier and
returning a record{l1 :τ1, . . .} of field names and corresponding
types. This means that we do not need to specify the field types in
an interface type if we have the interface identifier corresponding
to the interface. This approach captures the fact that interfaces are
fixed by IID. The type[ι] represents the type of a component, that
is, intuitively, the type of the interface that is the entry point of a
given component. As we will see shortly, this interface must have
IID IUnknown, and hence we don’t need to specify this IID in the
type.

An interface basically has type[I, 〈I1:ι1, . . .〉t], meaning it has
an IID I, and hence contains fields given byI(I), and is linked to
interfaces with IIDI1, . . . , In of typeι1, . . . , ιn, respectively. The
interface type is also tagged with a tagt, to which we’ll return in
Section 3.3. (It is used to check an aspect of COM conformance.)
A tag is either an integer or the special tag⊥. We will omit the
tag when it is not relevant. As we alluded to above, the linking
between interfaces can lead to cyclic structures. For example, an
interfacei1 of type [I1, ι1], that can be queried for an interface
with IID I2 of typeι2, which itself can be queried for an interface
of with IID I1, of type ι1. To type such cyclic structures, we
introduce the recursive interface typeµi(α1, . . . , αn).(ι1, . . . , ιn).
Technically, this construct takes the simultaneous fixed point of
ι1, . . . , ιn over the variablesα1, . . . , αn, and gives back the fixed
point corresponding toιi. Consider the recursive structure given
above. If we letα1 be the interface type ofi1, and α2 be the
interface type corresponding to queryingi1 for IID I1, thenα1 is
〈I2:α2〉t1 andα2 is 〈I1:α1〉t2 . Taking fixed points, the type ofi1
becomes[I1, µ1(α1, α2).(〈I2 :α2〉t1 , 〈I1 :α1〉t2)], and the type of
i2 becomes[I2, µ2(α1, α2).(〈I2:α2〉t1 , 〈I1:α1〉t2)], as expected.

Expressions in the language are used to construct values of the
appropriate types. As the calculus is based on theλ-calculus, it
has the standard constructs for functional abstraction (λx:τ.e) and
application (e1 e2), as well as integer constants.1 Type judgments
assign types to expressions. The basic typing judgment has the
form:

I; Ψ; Γ ` e : τ

whereI is the IID assignment function referred to earlier,Ψ is
the type of the heap, an assignment of types to locations of the
heap, andΓ is the type context for variables, which is a sequence
of typings of the formx : τ for variablesx. The type rules for
the basic expression forms are straightforward, and can be found
in Appendix A. We focus in the discussion that follows on the
expressions aimed at handling interfaces. The model is to be able to

1Actually, becauseλ abstraction requires a type, and because types
for interfaces contain tags assigned by the system, we have a special
tag that means essentially “not specified” (⊥). Interfaces appearing
in the type ofλ abstractions are required to be tagged with⊥. An
interface type with such a tag will match any similar interface type
with some other tag. Again, we will return to this point Section 3.3.

create interfaces independently, and eventually to name a particular
interface the entry point to a component. An interface is created via
the expression〈I | l1=e1, . . . | I1←e′1, . . .〉, whereI is the IID of
the interface being created, theli’s are labels of the fields to which
the valuesei’s are assigned, and theIi’s are the interfaces reachable
from the interface being created. The typing rule is straightforward:

∀i I; Ψ; Γ ` ei : τi ∀j I; Ψ; Γ ` e′j : [Ij , ιj]
I; Ψ; Γ ` 〈I | l1=e1, . . . | I1←e′1, . . .〉 : [I, 〈I1:ι1, . . .〉t]

(under the condition thatI(I) = {l1 :τ1, . . .}, and the tagt 6= ⊥
is fresh). Note that the tag is assigned nondeterministically by the
system.

Given an interfacee, you can read a value from a field ofe by
selection,e.l, just like you would a normal record. To follow the
link to a connected interface with IIDI, the expressione#I returns
the corresponding interface value. The corresponding typing rules
are as expected:

I; Ψ; Γ ` e : [I, ι]
I; Ψ; Γ ` e.l : τ

if I(I) = {l:τ, . . .}

I; Ψ; Γ ` e : [I ′, 〈I:ι, . . .〉]
I; Ψ; Γ ` e#I : [I, ι]

We already noted that most often, interfaces have a cyclic struc-
ture. To construct cycles in interfaces, we use arec construct:

rec x1=d1, . . . in e

with the following interpretation: each declarationdi represents an
interface (i.e., it uses the interface construction form), and it can
refer to variablesx1, . . . , xn. Intuitively, those variables will refer
to the other interfaces in the resulting constructed interfaces. We
impose the syntactic requirement that all references to variables on
the right-hand side of a variable binding in arec construct must
occur inside an interface constructor〈 | | 〉. Consider the cyclic
example given earlier:

rec
x1 = 〈I1 | l1 = 10 | I2←x2〉
x2 = 〈I2 | l2 = 20 | I1←x1〉

in
x1

Since therec form constructs potentially cyclic interfaces, the in-
terfaces created get a recursive interface type, as captured by the
following typing rule:

∀j I; Ψ; Γ, xi:[IUnknown, αi]
i∈1..n ` dj : [Ij , ιj]

I; Ψ; Γ, xi:[Ii, µi(α1, . . . , αn).(ι1, . . . , ιn)] i∈1..n ` e : τ
I; Ψ; Γ ` rec x1=d1, . . . , xn=dn in e : τ

Note that the interface selectione#I only works with interface
with an interface type of the form〈I1 :ι1, . . .〉, and will not work
on recursive interface types. Rather than extending the scope of the
interface selection operators, we use the observation that a recur-
sive type and its unwinding are equivalent. Instead of allowing this
unwinding to happen at arbitrary points during the type derivation,
we force an explicit transformation of the recursive type through
an unroll operator. (In fact, an infinite family, as we index by
the rolled-up type.) The rule forunroll simply witnesses the type
equivalence:

I; Ψ; Γ ` e : [I, µi(α1, . . . , αn).(ι1, . . . , ιn)]
I; Ψ; Γ ` unroll ι (e) : [I, ιi [µj(α1, . . . , αn).(ι1, . . . , ιn)/αj]]

(whenι = µi(α1, . . . , αn).(ι1, . . . , ιn)).

Note that since we never need to roll back an unrolled type, we
have noroll construct in our language.

3.3 Components and COM conformance
The expressions we described in the previous section allows for

a general handling of interfaces. We now focus on the problem of
putting interfaces together into components, in the sense of COM.
Roughly speaking, legal COM components should be sensible with
respect to going from interface to interface. Put it yet another way:
a component should implement a given set of interfaces. Now, there
may be different implementationswithin the same componentof
the same interface, and generally, the graph of interface implemen-
tation can be arbitrarily large. A legal COM component gives the
illusion of having a single implementation of each interface. More-
over, as we saw, querying an interface of the component forIUn-
knownshould always give us back the same pointer (the same im-
plementation of theIUnknowninterface), allowing theIUnknown
pointer to be used to determine object identity; if two interfaces
give you back the same pointer when queried forIUnknown, the
two interfaces are implemented by the same component.

The idea is simply, given a set of connected interfaces, to isolate
a particular interface as being the “entry point” into the component.
This interface is required to be anIUnknowninterface. When this
interface is isolated to form the component, moreover, it is stati-
cally checked to ensure that is satisfies the requirements for COM
conformance. (This check is conservative, in that it will reject
components that are legal components, but that cannot be proved
so using the typing rules.) The constructcomponent(e) takes an
IUnknowninterfacee of interface typeι, and returns acomponent
of type [ι]. The corresponding typing rule contains judgments that
check for COM conformance, that we will describe shortly:

I; Ψ; Γ ` e : [IUnknown, ι]
` ι . (I1, . . . , Ik)
` ι ⇓ t t 6= ⊥
I; Ψ; Γ ` component(e) : [ι]

Of course, since a component is just a particular interface, we have
a construct to view a component as that particular interface. Hence,
if e is a component, thene# returns the correspondingIUnknown
interface, with the obvious typing rule:

I; Ψ; Γ ` e : [ι]
I; Ψ; Γ ` e# : [IUnknown, ι]

Intuitively, typing a component means typing the corresponding
interface, which must be aIUnknowninterface, checking that the
interfaces reachable from theIUnknowninterface form a consistent
set (that is, makes all the same interfaces available irrespectively of
how one got there), and checking that theIUnknownpointers all
agree. To achieve this, two new type judgments are introduced.
The typing rules corresponding to those judgments are given in
Appendix A.

The first judgment, of the form∆ ` ι . (I1, . . . , Ik), simply
checks that all the interfaces reachable from an interface with in-
terface typeι all present interfaces with IIDI1, . . . , Ik. ∆ is a
list of type variablesα . (I1, . . . , Im) indicating the assumptions
on those type variables when type-checking a recursive type. In-
tuitively, this judgment captures the fact that all the interfaces of a
component must present the same interfaces. Note that there is no
requirement that these interfaces be the same interfaces; they just
need to provide an interface of the appropriate interface type. For

example, the following expression meets this requirement:

rec
x1 = 〈I1 | l1 = 10 | I1←x1, I2←x2〉
x2 = 〈I2 | l2 = 20 | I1←x1, I2←x2〉

in
x1

and so does the following:

rec
x1 = 〈I1 | l1 = 30 | I1←x1, I2←x3〉
x2 = 〈I2 | l2 = 50 | I1←x4, I2←x2〉
x3 = 〈I2 | l2 = 40 | I1←x1, I2←x2〉
x4 = 〈I1 | l1 = 60 | I1←x1, I2←x2〉

in
x1

The second judgment, of the form∆ ` ι ⇓ t, checks that the
given interface typeι is such that anyIUnknowninterface reachable
from ι is tagged with the same tagt. Since whenever an interface
is created, its type gets a fresh tag, this ensures that allIUnknown
interfaces reachable are thesameinterface. Part of the difficulty
this introduces, as alluded to earlier, is that it doesn’t interact well
with functional abstraction. One way to explain this is simply as
an aliasing problem under a different guise. We solve the problem
by a rather crude approach: whenever an interface goes through a
functional abstraction as an argument, its tag is cleared (i.e., set to
⊥).2 This is not as restrictive as it appears, and most importantly,
doesnot prevent us to use first-class interfaces. Since the only
place where tags are checked is at the time of component creation,
our restriction simply means that when an interface is passed to a
function, it cannot be used to construct a component within that
function.

4. COMPUTATIONAL SEMANTICS
The operational behavior ofλCOM is heavily inspired by the

allocation semantics of [5, 6] which makes the allocation of data
in the heap explicit. The only pieces of data that we will model
as living in the heap are the interfaces. Intuitively, this is because
we want to explicitly reason about interface sharing, and identify
pointer equality in some cases.

The operational semantics of our calculus (Figure 2) is given
by a deterministic rewriting systemM → M ′ mapping machine
states to new machine states. A machine state consists of a triple
(H, e, S) of a heapH, an expressione being executed, and a stack
S. A heap is a finite mapping of locations (`) to interfaces, where an
interface is simply implemented as a block of memory, containing
the data and the location of the other interfaces accessible from
that interface. Typing judgments are introduced to assign a type
to heaps, as well as machine states. Those judgments are given in
Appendix A.

Let us spent some time on the basic infrastructure of the reduc-
tion rules. First, consider the management of the stack. Two rules
handle this. The first rule pushes a context on the stack:

(H, F [e], S) −→ (H, e, F :: S)

Intuitively, if the current expression is a contextF whose hole is
filled by expressione, then the contextF is pushed on the stack
while e is evaluated. Eventually,e will evaluate down to an ex-
tended valueu, at which point the context on top of the stack is

2This is achieved in Appendix A using a judgment` τ ≡⊥ τ ′

whereτ ′ is restricted to only have⊥ tags.

extended values u ::= i | λx:τ.e | ` | component(`) | x

heaps H ::= {`1 7→ h1, . . .}
heap types Ψ ::= {`1 : τ1, . . .}
heap values h ::= 〈I | l1 = v1, . . . | I1←`1, . . .〉

stack frames F ::= [] e | v [] | [].l | []#I | rec x1 = [], . . . in e | · · · |
unroll ι ([]) | 〈I | l1 = [], . . . | I1←e, . . .〉 | · · · |
〈I | l1 = u1, . . . | I1 ← [], . . .〉 | · · · |
component([]) | []#

stacks S ::= nil | F :: S
machine states M ::= (H, e, S)

(H, u, F :: S) −→ (H, F [u], S)

(H, F [e], S) −→ (H, e, F :: S)

(H, (λx:τ.e) u, S) −→ (H, e [u/x] , S)

(H, 〈I | l1 = u1, . . . | I1←u′1, . . .〉, S) −→ (H ⊕ {` 7→ 〈I | l1 = u1, . . . | I1←u′1, . . .〉}, `, S) if ` 6∈ Dom(H)

(H, `.l, S) −→ (H, u, S) if H(`) = 〈I | l = u, . . . | . . .〉
(H, `#I, S) −→ (H, u, S) if H(`) = 〈I | . . . | I←u, . . .〉

(H, unroll ι (u), S) −→ (H, u, S)

(H, rec x1 = u1, . . . in e, S) −→ ((H ⊕ {`i 7→ ui})[`1/x1, . . .], e[`1/x1, . . .], S) if `1, . . . 6∈ Dom(H)

(H, component(`)#, S) −→ (H, `, S)

Figure 2: λCOM operational semantics

popped, and filled with the valueu:

(H, u, F :: S) −→ (H, F [u], S).

Notice that the stack is popped when an expression is reduced to
an extended value, not simply a value. Essentially, an extended
value is either a value or an unevaluated variable. Such unevalu-
ated variables occur during the interpretation ofrec constructs: the
bindings are evaluated without resolving the variables. When the
rec bindings are all evaluated, the variables are then resolved.

The terminal states of the reduction relation are states of the
form (H, v, nil), that is, yielding a valuev, with an empty stack
indicating that nothing remains to be done. The type system en-
sures that the evaluation of a well-typed expression never enters a
stuck state. A state(H, e, S) is stuckif e is not a value and there
does not exist(H ′, e, S′) such that(H, e, S) → (H ′, e′, S′). The
following theorem follows from Preservation and Progress lemmas,
à la Wright and Felleisen [18]:

THEOREM 4.1 (TYPE SOUNDNESS). If I ` (H, e, nil) : τ
and(H, e, nil) −→∗ (H ′, e′, S′) then(H ′, e′, S′) is not stuck.

Type soundness is one property that we want from a type sys-
tem in general. Our type system, as we saw above, also seeks
to ensure that created components are conformant to the rules of
COM. In order to address this issue, we need to formalize some of
the concepts we need. Given a heapH, and given anI interface
pointer` (that is, a pointer̀ such thatH(`) = 〈I | · · · | · · ·〉), we
say that anI ′ interface pointer̀ ′ is immediately reachablefrom `
(written ` H `′) if H(`) = 〈I | · · · | I ′←`′, . . .〉. We say`′

is reachablefrom ` if there exists a sequence`1, . . . , `n such that
` H `1 H · · · H `n H `′. Corresponding to a component
C, we have itsIUnknowninterface pointer̀C . We say an interface

pointer` is an interface ofC if `C ∗
H `. We can now formalize

the properties implying COM conformance.
An IUnknown interface pointer̀ C (representing a component

C) is COM conformant(with respect to a heapH) if the following
properties hold:

• if ` if an interface ofC, then`C is immediately reachable
from `,

• if `1 is anI interface ofC, then there exists anI interface
pointer`2 immediately reachable from̀1,

• if `1 is an I1 interface ofC and `2 is an I2 interface of
C immediately reachable from̀1, then there exists anI1

interfacè 3 immediately reachable from̀2, and

• if `1 is anI1 interface ofC, `2 is anI2 interface ofC im-
mediately reachable from̀1, and `3 is an I3 interface of
C immediately reachable from̀2, then there exists anI3

interfacè 4 immediately reachable from̀1.

These rules capture the required properties described in Sec-
tion 2. Also, the above makes clear that not all the interfaces need
be implemented by the same pointers. We can now prove that our
type system indeed enforces COM conformance of components.

THEOREM 4.2. If I ` (H, component(`), S) : τ , then` is
COM conformant with respect toH.

Intuitively, the typing rules guarantee that if(H, component(`), S)
type-checks, thencomponent(`) itself type-checks, and the typing
rule forcomponent(`) involves judgments to ensure that` has the
required properties. A variation on type soundness leads to the
following corollary of Theorem 4.2, showing that it is essentially
sufficient for COM conformance thatcomponent(e) type-checks:

COROLLARY 4.3. If I ` (H, component(e), nil) : τ and
(H, component(e), nil) −→∗ (H ′, component(`), nil), then` is
COM conformant with respect toH ′.

5. EXTENSIONS
Several natural extensions to the basic framework are possible,

and deserve to be explored further. We outline the main ones here,
relegating their development to future work.

5.1 Subtyping of interfaces
One natural extension ofλCOM is to allow subtyping. Although

we can extendλCOM itself to a fully subtyped calculus, we can
restrict our attention to subtyping of interfaces, more precisely sub-
typing of the reachable interfaces of an interface. In other words,
we would like to say, for instance, that an interface of type[I, 〈I1:
ι1〉] is a subtype of[I, 〈I1:ι1, I2:ι2〉]. Why only look at subtyping
in terms of reachable interfaces? Presumably, depth and width
subtyping of the fields of an interface could be achieved by moving
to a full subtyping calculus. However, the interfaces of COM are
immutable, and so not allowing subtyping on fields seems more
in spirit with the model. The aim is to be able to write functions
that expect an interfaceI from which only such and such interfaces
can be reached—for instance, only those interfaces used within the
body of the functions. The type of the interface argument of these
functions then captures the minimal requirements of the interfaces

To extendλCOM in that way, we need to define a subtyping
relation over interface types. This turns out to be tricky because
of the presence of type of the formµi(α1, . . . , αn).(ι1, . . . , ιn),
which compute multiple fixed points for recursive types. As a
first approximation, and to capture the case of interest above, we
can restrict our attention to the case where the bound type is not
recursive. Thus, we could define a new type judgment` ι1 ≤ 〈I1 :
ι1, . . .〉:

` ιIi ≤ ι′Ii

` 〈I1 : ιI1 , . . .〉≤〈I ′1 : ι′I′
1
, . . .〉 if {I1, . . .} ⊆ {I ′1, . . .}

` ιi[µ1(α1 . . . αn).(ι1, . . . , ιn)/α1, . . .] ≤ ι
` µi(α1, . . . , αn).(ι1, . . . , ιn) ≤ ι

To simplify our life, we require an explicit coercion when a
supertype is needed. (The coercion would not change the runtime
representation of the interface, which is after all simply a location
in the heap, only the type.) The functionsupι (e), indexed by the
target type, perform the necessary translation:

I; Ψ; Γ ` e : [I, ι1] ` ι1 ≤ ι2
I; Ψ; Γ ` upι2

(e) : [I, ι2]

It should be clear that such an extension toλCOM is still sound.
COM conformance still holds, although under a weakened form;
the type system isolates a conformant subset of interfaces. So
the component itself may not be strictly speaking conformant, but
what can effectively be reached according to the type system is
conformant.

5.2 Dynamic interface negotiation
The most noticeable discrepancy betweenλCOM and the general

COM model is that we require complete knowledge of the compo-
nents under consideration. Thus, we can handle any component we
create, as the construction will force the type to reveal the avail-
able interfaces. In contrast, COM allows the client to use a COM

component it knows nothing about, by querying it for interfaces.
Our type system only allows a client to query for a component
which is statically known to provide the interface. COM allows
for dynamic queries: querying for an interface returns an interface
only if such an interface is available; if it is not, no failure occurs,
but an indication is returned to the user. This allows processing
to be tailored to the component at hand, a special case of this
being “graceful fallback” behavior: if an old interfaceI1 is updated
into a new better and fasterI2, an application can try to see if a
component implementingI1 implementsI2 (under the assumption
that it would use that interface if available), and fall back onI1 if
not.

It is easy to extend our calculus to account for some kind of
imported component for which nothing is known initially. We thus
need a construct to dynamically query for an interface. The con-
structcaseI ∈ x (e1 | e2) tests if the interface accessed through
the variablex supports interfaceI; if so, it evaluatese1, otherwise
it evaluatese2. This check is performed in some unspecified way
for imported components. This construct can also be used (with
the appropriate operational behavior) as adowncastingoperator in
conjunction with subtyping (cf. Section 5.1): if an application of
upι (e) has “forgotten” some interfaces existing ine, it is possible
to query back for them. We restrict the checking to a variable for
technical reasons that will become clear after we look at the typing
rule.

I; Ψ; Γ⊕ x:[I0, 〈I1:ι1, . . . , In:ιn, I:〈〉〉] ` e1 : τ ′

I; Ψ; Γ ` e2 : τ ′

I; Ψ; Γ ` caseI ∈ x (e1 | e2) : τ ′

(if Γ(x) = [I0, 〈I1 :ι1, . . . , In :ιn〉], and where⊕ indicates envi-
ronment update). The idea is simply that to typee1, we can assume
that the type ofx has been updated to reflect the fact that interface
I is indeed available. This explains the restriction to variables; we
need a place where we can attach the new information.

Again, the resulting calculus is easily seen to be sound. What
about COM conformance? Unfortunately, we lose the ability to
check for conformance of components that use dynamic negotia-
tion. A problem, for instance, is to ensure that components are
stable in the sense of Section 2. One approach would be to define
a version of conformance that is dependent on the conformance of
imported components; this venue however remains to be explored.

5.3 Aggregation
Up to a point, we can encompass in our model both subtyping

of interfaces and dynamic interface negotiation. A harder aspect
of COM to model is aggregation, one of the ways of compos-
ing components we saw in Section 2. (Containment, the other
composition method, is in some sense trivial to implement, as it
is a question of locally allocating a component within the scope
of another component.) There are two main problems with mod-
eling aggregation. First, it is not immediately clear how to ac-
count for aggregation at the time of component creation. The COM
framework requires a component to know when it is being created
in aggregated form. This permits the aggregated component to
implement a special version of itsQueryInterfaceoperation, to
account for the rules of aggregation (see [4] for a description of
those rules). The implementation of aggregation is heavily biased
towards a single implementation ofQueryInterface, shared across
all the interfaces of a component. In our model, where interfaces
are created in a sense separately from components, aggregation
requires modifying already allocated interfaces at aggregation time.
Accommodating such modifications in our framework seems to

require moving to a setting where interface allocation and initial-
ization is dissociated, in the style of [12, 17]. We are currently
exploring this approach.

Even if the basic model can be modified to handle aggregation,
the problem of deciding COM conformance still remains. In the
presence of dynamic negotiation, one of the results of [14] is that
COM conformance in the presence of aggregation cannot be cap-
tured statically. Roughly speaking, a component is COM confor-
mant with respect to aggregation if it is correct with respect to all
“valid” sequences of operations on the component. (The definition
of a valid sequence of operation can be found in [14].) This seems
to force the check for COM conformance to be performed at run-
time.

6. RELATED WORK
The most relevant work related to our work, in that it attempts to

capture the COM framework at a linguistic level and tries to prove
properties of the framework in that setting, is that of Ibrahim and
Szyperski [2, 3]. They define a language (the COM External Lan-
guage, or COMEL), a Modula-like language with primitive notions
of interfaces, containment and aggregation. They decide to work at
a higher level than we do, abstracting away many of the details of
COM; for instance, they completely subsume theQueryInterface
mechanism at the language level. As a consequence, they cannot
reason about aspects of COM that rely on an explicit pointer repre-
sentation, such as the COM conformance of a set of interfaces.

We have already mentioned the work of Sullivanet al. [14,
15]. Their approach to formalizing COM is totally different. They
express the properties of the framework in a formal language, the Z
notation [13], and derive properties and requirements of COM con-
formant components. They do not attempt to provide an execution
model for the framework.

Other approaches to formalization are not specific to COM, but
attempt to get at the essence of components. Many such approaches
are derived straight from object-oriented developments. For in-
stance, Seco and Caires [11] describe a calculus that captures what
are, in their view and others, the basic elements of component-
based programming, namely explicit context dependency, dynamic
binding, subtype polymorphism, dynamic composition, and object
composition. Although some of those issues arise in COM, the
calculus as presented is at a much higher level of abstraction than
λCOM. Moreover,λCOM does not at the present time attempt to get
at the generalities of component-oriented programming, but rather
aims at capturing the key elements of the COM model, a different
goal. It is hoped that eventually, higher level issues can be derived
from the low level description ofλCOM.

An interesting direction in recent work on component-oriented
programming is the development of type systems that capture the
notion of “contract” with a component [16]. Intuitively, using a
component correctly in a given context requires the context to fol-
low a given protocol to interact with the component: maybe func-
tions need to be called in some order, such asopenbeforeread, etc.
Composing components requires reasoning about the interaction
of those contracts. Work by Reussner and others [8, 9] attempts
to develop type systems in those directions. As we noted before,
this work is at a much higher level than ours, and in fact is not
incompatible with our approach.

7. DISCUSSION
We have described in this paper a first step in the direction of a

general calculus for reasoning about COM-style components and
interfaces. Such a calculus is a requirement for deriving program-

ming languages based on the COM model, with the hopes of a type
system to statically guarantee conformance of the created compo-
nents with the requirements of the component framework. (A ten-
tative step in that particular direction is outlined in [7]; attempting
to get the framework in that paper to work highlighted the need for
the formal work described in this paper.)

Our approach makes a number of simplifying assumptions. The
central design issue of our calculus, in fact, of any formal frame-
work intending to model COM, is the design of theQueryInter-
face functionality. Recall that in COM,QueryInterfaceis imple-
mented by a method present in every interface. In our calculus, the
functionality is implemented by what amounts to a lookup table—
clearly a simplification. Among other things, this means that given
an interface pointer̀, querying` for an interfaceI will always
return the same pointer. In contrast, in COM, the interface pointer
returned can be different. (For the sake of an example, consider a
QueryInterfaceimplementation that when queried for a particular
interface alternatively returns one of two interfaces pointers, maybe
to reduce the load on whichever machine implements the actual
interface in a distributed setting.) Presumably, our calculus can be
modified to handle this, but this would make checking for confor-
mance more difficult. One possibility would be to allow aQuery-
Interfacefunction in each interface, expressed from withinλCOM,
expecting an interface name and returning an interface pointer. To
check for COM conformance, we then need to be able to statically
specify the interface names for which the function returns an inter-
face pointer.

Another restriction, this time syntactic, concerns the handling of
recursive interfaces. Recursive interfaces must be defined within a
samerec block. Moreover, the fields in the interface cannot depend
on the interfaces being recursively defined. This restriction can be
somewhat weakened, but for the purposes of this paper, we can use
the semantics and rules we set forth. It is also possible to move
to an even lower level operational semantics, that dissociates the
allocation of space in the heap for interfaces from the initialization
of its fields and reachable interfaces. This approach would lead to
a calculus in the style of [12, 17], and seems required to deal with
aggregation.

One restriction that isnot imposed by our system is the handling
of QueryInterfacein a centralized way. In most COM implementa-
tions, typically based on object-oriented languages such as C++, in-
terfaces are objects, and inherit from a base objectIUnknown. The
IUnknownobject implements theQueryInterfacefunction. This
ensures COM conformance, as every interface automatically rec-
ognizes the same interfaces as every other. We chose not to model
things that way for the sake of generality. Besides, even in the C++

implementation, an object inheriting fromIUnknownis allowed to
redefineQueryInterfaceand therefore throws one back to the full
generality of the COM model.

In our calculus, we chose not to model components in any special
way. In fact, what we are calling components in Section 3.3 are
more accurately called component instances. Future work clearly
points to handling components as makers or constructors (maybe
via actual class factories). Again, this may be required to deal with
aggregation correctly.

There remains much work to be done to cover even the basic
COM model. The most important issues include modeling confor-
mance in the presence of dynamic interface negotiation (cf. Sec-
tion 5.2), and modeling aggregation (cf. Section 5.3). Finally,
another central aspect of the COM model not addressed in exist-
ing formal accounts is the issue of memory management: COM
gives very explicit rules for allocating and deallocating component
instances. In fact, theIUnknown interface prescribes two other

methods aside fromQueryInterface, namelyAddRefandReleaseto
perform reference-counting memory management for component
instances. It would be interesting to model this in our calculus via
explicit memory management [5], and attempt to formally prove
the appropriateness of the rules for COM memory management.

8. ACKNOWLEDGEMENTS
I have greatly benefitted from discussions with Greg Morrisett.

Dan Grossman and David Walker have read early drafts of this
work and provided helpful comments.

9. REFERENCES
[1] D. Chappell.Understanding ActiveX and OLE. Microsoft

Press, 1996.
[2] R. Ibrahim and C. Szyperski. The COMEL language.

Technical Report FIT-TR-97-06, Faculty of Information
Technology, Queensland University of Technology,
Brisbane, Australia, 1997.

[3] R. Ibrahim and C. Szyperski. Can Component Object Model
(COM) be formalized? — the formal semantics of the
COMEL language. Work-In-Progress, IRW/FMP’98. Also
appears as Technical Report TR-CS-98-09, The Australian
National University, 1998.

[4] Microsoft Corporation and Digital Equipment Corporation.
The Component Object Model Specification. Draft version
0.9, available from
http://www.microsoft.com/com , 1995.

[5] G. Morrisett, M. Felleisen, and R. Harper. Abstract models
of memory management. InACM Conference on Functional
Programming and Computer Architecture, pages 66–77.
ACM Press, 1995.

[6] G. Morrisett and R. Harper. Semantics of memory
management for polymorphic languages. InHigher-Order
Operational Techniques in Semantics, pages 175–226.
Cambridge University Press, 1997.

[7] R. Pucella. The design of a COM-oriented module system. In
Proceedings of the Joint Modular Languages Conference,
number 1897 in Lecture Notes in Computer Science, pages
104–118. Springer-Verlag, 2000.

[8] R. Reussner. Dynamic types for software components. In
Companion of the Conference on Object-Oriented
Programming Systems, Languages, and Applications
(OOPSLA ’99), 1999.

[9] R. Reussner and D. Heuzeroth. A Meta-Protocol and Type
system for the Dynamic Coupling of Binary Components. In
Proceedings of the OOPSLA’99 Workshop on Object
Oriented Reflection and Software Engineering, 1999.

[10] D. Rogerson.Inside COM. Microsoft Press, 1997.
[11] J. C. Seco and L. Caires. A basic model of typed

components. InProceedings of the European Conference on
Object-Oriented Programming (ECOOP), volume 1850 of
Lecture Notes in Computer Science, pages 108–128, 2000.

[12] F. Smith, D. Walker, and G. Morrisett. Alias types. In
Proceedings of the European Symposium on Programming,
volume 1782 ofLecture Notes in Computer Science, pages
366–381, 2000.

[13] M. Spivey.The Z Notation: A Reference Manual. Prentice
Hall International Series in Computer Science. Prentice-Hall,
second edition, 1992.

[14] K. J. Sullivan and M. Marchukov. Interface negotiation and
efficient reuse: A relaxed theory of the component object

model. Technical Report 97-11, Department of Computer
Science, University of Virginia, 1997.

[15] K. J. Sullivan, M. Marchukov, and J. Socha. Analysis of a
conflict between aggregation and interface negotiation in
Microsoft’s Component Object Model.IEEE Transactions
on Software Engineering, 25(4):584–599, 1999.

[16] C. Szyperski.Component Software. Addison Wesley, 1997.
[17] D. Walker and G. Morrisett. Alias types for recursive data

structures. InWorkshop on Types in Compilation, 2000.
[18] A. K. Wright and M . Felleisen. A syntactic approach to type

soundness.Information and Computation, 115(1):38–94,
1994.

APPENDIX

A. TYPING RULES
We assume a canonical ordering on the fields of an interface, and a compatible canonical ordering on both the list of interfaces reachable

from an interface, and the list of interfaces in an interface type.
We assume that the set IIDS of interface identifiers contains the special interface identifierIUnknown, and that any interface assignmentI

is such thatI(IUnknown) = {}.
The typing rules also need the following auxiliary functions. The functiontag returns the tag of a particular interface:

tag(〈I1:ι1, . . .〉t) = t
tag(µi(α1, . . . , αn).(ι1, . . . , ιn)) = tag(ιi)

The functionFTV returns all the free type variables of a given interface type.
We assume that type equivalence is simply syntactic equality up to renaming of bound variables.

I; Ψ; Γ ` e : τ

I; Ψ; Γ, x:τ ` x : τ I; Ψ; Γ ` i : int I; Ψ; Γ ` ` : τ
if Ψ(`) = τ

I; Ψ; Γ, x:τ ` e : τ ′

I; Ψ; Γ ` λx:τ.e : τ → τ ′
I; Ψ; Γ ` e1 : τ1 → τ2 I; Ψ; Γ ` e2 : τ3 ` τ3 ≡⊥ τ1

I; Ψ; Γ ` e1 e2 : τ2

∀j I; Ψ; Γ, xi:[IUnknown, αi]
i∈1..n ` dj : [Ij , ιj] I; Ψ; Γ, xi:[Ii, µi(α1, . . . , αn).(ι1, . . . , ιn)] i∈1..n ` e : τ
I; Ψ; Γ ` rec x1 = d1, . . . , xn = dn in e : τ

∀i I; Ψ; Γ ` ei : τi ∀j I; Ψ; Γ ` e′j : [Ij , ιj]
I; Ψ; Γ ` 〈I | l1 = e1, . . . | I1←e′1, . . .〉 : [I, 〈I1 : ι1, . . .〉t]

if I(I) = {l1:τ1, . . .} andt 6= ⊥ is fresh

I; Ψ; Γ ` e : [I, ι]
I; Ψ; Γ ` e.l : τ

if I(I) = {l:τ, . . .} I; Ψ; Γ ` e : [I ′, 〈I : ι, . . .〉]
I; Ψ; Γ ` e#I : [I, ι]

I; Ψ; Γ ` e : [I, µi(α1, . . . , αn).(ι1, . . . , ιn)]
I; Ψ; Γ ` unroll ι (e) : [I, ιi [µj(α1, . . . , αn).(ι1, . . . , ιn)/αj]]

if ι = µi(α1, . . . , αn).(ι1, . . . , ιn)

I; Ψ; Γ ` e : [IUnknown, ι] ` ι . (I1, . . . , Ik) ` ι ⇓ t t 6= ⊥
I; Ψ; Γ ` component(e) : [ι]

I; Ψ; Γ ` e : [ι]
I; Ψ; Γ ` e# : [IUnknown, ι]

` τ ≡⊥ τ ′

` int ≡⊥ int ` τ1 → τ2 ≡⊥ τ1 → τ2

` ι1 ≡⊥ ι2
` [I, ι1] ≡⊥ [I, ι2]

` ι ≡⊥ ι′

` ι1 ≡⊥ ι′1 . . .
` 〈I1:ι1, . . .〉t ≡⊥ 〈I1:ι

′
1, . . .〉⊥ ` α ≡⊥ α

` ι1 ≡⊥ ι′1 . . . ` ιn ≡⊥ ι′n
` µi(α1, . . . , αn).(ι1, . . . , ιn) ≡⊥ µi(α1, . . . , αn).(ι′1, . . . , ι

′
n)

I; Ψ; Γ ` F : τ1 → τ2; Γ
′

I; Ψ; Γ ` e : τ1

I; Ψ; Γ ` [] e : (τ1 → τ)→ τ ; Γ
I; Ψ; Γ ` v : τ1 → τ2

I; Ψ; Γ ` v [] : τ1 → τ2; Γ

I; Ψ; Γ ` [].l : [I, ι]→ τ ; Γ
if I(I) = {l : τ, . . .}

I; Ψ; Γ ` []#I : [I ′, 〈I:ι, . . .〉]→ [I, ι]; Γ

I; Ψ; Γ ` unroll ι ([]) : [I, ι]→ [I, ιi[µ1(α1, . . . , αn).(ι1, . . . , ιn)/α1, . . .]]; Γ
if ι = µi(α1, . . . , αn).(ι1, . . . , ιn)

∀i 6= 1 I; Ψ; Γ ` ei : τi ∀j I; Ψ; Γ ` e′j : [Ij , ιj]
I; Ψ; Γ ` 〈I | l1 = [], l2 = e2, . . . | I1←e′1, . . .〉 : τ1 → [I, 〈I1:ι1, . . .〉]; Γ

if I(I) = {l1:τ1, . . .}

...

∀i I; Ψ; Γ ` vi : τi ∀j 6= 1 I; Ψ; Γ ` e′j : [Ij , ιj]
I; Ψ; Γ ` 〈I | l1 = v1, . . . | I1←[], I2←e′2, . . .〉 : [I, ι1]→ [I, 〈I1:ι1, . . .〉]; Γ

if I(I) = {l1:τ1, . . .}

...

∀j 6= 1 I; Ψ; Γ, xi:[IUnknown, αi]
i∈1..n ` dj : [Ij , ιj] I; Ψ; Γ, xi:[Ii, µi(α1, . . . , αn).(τ1, . . . , τn)] i∈1..n ` e : τ

I; Ψ; Γ ` rec x1 = [], x2 = d2, . . . in e : [I1, µ1(α1, . . . , αn).(τ1, . . . , τn)]→ τ ; Γ, xi : [IUnknown, αi]

...

I; Ψ; Γ ` component([]) : [IUnknown, ι]→ [ι]; Γ

I; Ψ; Γ ` []# : [ι]→ [IUnknown, ι]; Γ

I; Ψ; Γ ` S : τ1 → τ2; Γ
′

I; Ψ; Γ ` nil : τ → τ ; Γ

I; Ψ; Γ ` S : τ2 → τ3; Γ
′ I; Ψ; Γ′ ` F : τ1 → τ2; Γ

′′

I; Ψ; Γ ` F :: S : τ1 → τ3; Γ
′′

I; Ψ; Γ ` (e, S) : τ

I; Ψ; Γ ` S : τ1 → τ2; Γ
′ I; Ψ; Γ′ ` e : τ1

I; Ψ; Γ ` (e, S) : τ2

I ` H : Ψ

I; Ψ ` hi : τi

I ` {`1 7→ h1, . . .} : Ψ
if Ψ = {`1 : τ1, . . .}

I; Γ ` (H, e, S) : τ

I ` H : Ψ I; Ψ; Γ ` (e, S) : τ
I; Γ ` (H, e, S) : τ

∆ ` ι . (I1, . . . , Ik)

∆ ` ι . (Ip(1), . . . , Ip(k))
∆ ` ι . (I1, . . . , Ik)

if p is a permutation of{1, . . . , k}

∆, α . (I1, . . . , Ik) ` α . (I1, . . . , Ik)

∆ ` ιi . (I1, . . . , Ik)
∆ ` 〈I1 : ι1, . . .〉 . (I1, . . . , Ik)

∆, αi1 . (I1, . . . , Ik), . . . , αim . (I1, . . . , Ik) ` ιi . (I1, . . . , Ik)
∆ ` µi(α1, . . . , αn).(ι1, . . . , ιn) . (I1, . . . , Ik)

if FTV (ιi) = {αi1 , . . . , αim}

` ι ↓ t

` 〈IUnknown: ι, . . .〉 ↓ t
if tag(ι) = t

` ιi[µ1(α1, . . . , αn).(ι1, . . . , ιn)/α1, . . .] ↓ t
` µi(α1, . . . , αn).(ι1, . . . , ιn) ↓ t

∆ ` ι ⇓ t

∆, α ⇓ t ` α ⇓ t

` 〈I1:ι1, . . .〉 ↓ t ∀i ∆ ` ιi ⇓ t
∆ ` 〈I1:ι1, . . .〉 ⇓ t

` µi(α1, . . . , αn).(ι1, . . . , ιn) ↓ t ∀i ∆, αi1 ⇓ t, . . . , αim ⇓ t ` ιi ⇓ t
∆ ` µi(α1, . . . , αn).(ι1, . . . , ιn) ⇓ t

if FTV (ιi) = {αi1 , . . . , αim}

