
Reasoning about Dynamic Policies

Riccardo Pucella and Vicky Weissman

Department of Computer Science
Cornell University
Ithaca, NY 14853

{riccardo,vickyw}@cs.cornell.edu

Abstract. People often need to reason about policy changesbefore they are
adopted. For example, suppose a website manager knows that users want to enter
her site without going through the welcome page. To decide whether or not to
permit this, the wise manager will consider the consequences of modifying the
policies (e.g., would this allow users to bypass advertisements and legal notices?).
Similiarly, people often need to compare policy sets. For example, consider a per-
son who wants to buy health insurance. Before choosing a provider, the customer
will want to compare the different policies. In other words, the customer wants
to reason about the effect of choosing one policy set over another. We introduce
a logic, based on propositional dynamic logic, in which these tasks can be done.
We give a sound and complete axiomatization for our logic, and also show that it
is decidable. More precisely, the satisfiability problem is decidable in nondeter-
ministic exponential time.

1 Introduction

Many applications include a set of statements, called policies, that say what is and
what is not permitted. Policies arise in many different settings. They can be access
control policies, describing which agents are permitted to access resources. They can
be legal policies, describing what actions are legally permitted, in a normative sense. An
important observation is that an application’s set of policies might not be static. They
often change over time, particularly in response to a user’s request. A user not only
asks for policy changes, she usually compares the policies of different applications
and chooses the one that’s best for her. Even before a policy set can be changed or
rejected outright, a system designer needs to create the original set. This might involve
comparing different options with respect to what they allow, as well as how difficult
they are to implement. Choosing whether or not to modify a policy set, deciding to
accept or reject one, and creating policies are nontrivial tasks. To get a sense of what
needs to be done in practice, consider the following examples.

Example 1.1.Suppose Alice has a junior library card that lets her into the junior section
of the library and nowhere else. Alice asks her librarian Libby for an adult card, because
she wants to read the books on Classical Philosophy that are kept in the library’s adult
nonfiction section. Should Libby change the library’s policies so that Alice may act as
an adult patron? To answer this question wisely, Libby needs to determine the conse-
quences of her change. If the only consequence is that Alice may access the adult fiction

and adult nonfiction collections, then it seems reasonable for Libby to grant the request.
On the other hand, if the adult card would allow Alice to enter the library’s section on
erotic literature, then Libby might look for another solution.

Example 1.2.A company wants to offer its employees health insurance. The providers
under consideration are Aetna and Blue Cross Blue Shield. To make an informed deci-
sion, the company needs to determine which actions are permitted under Aetna’s poli-
cies that are not allowed under Blue Cross Blue Shield’s and vice-versa.

Example 1.3.A software company is building a new application. The policies that gov-
ern the application need to enforce theprinciple of least privilege[24, p.242], which
says that each agent has only those permissions that are necessary to do her job. Alice
is told to create the policies. To do this, she needs to build a policy set and then check
that it meets the principle of least privilege. Once she has found an appropriate set, she
gives it to Bob, whose job is to implement the policies correctly. Bob creates a new
policy set that is relatively easy to implement and seems equivalent to the one Alice
gave him. Before implementing the new set, however, Bob needs to verify that his set
allows exactly the same actions as Alice’s.

These examples demonstrate a need for a language in which people can compare
policies and reason about suggested changes. There are many languages for articulating
and reasoning about policies. A survey by Wieringa and Meyer [29] provides some ex-
amples. Others may be found in a variety of Computer Science communities, including
computer systems security [7, 13, 8], automated legal reasoning [19], database integrity
[23], and digital rights management [27, 17, 2, 11]. All of these languages were created
to determine which permissions follow from a single, fixed set of policies. They simply
were not designed to address the issues highlighted by our examples. In particular, they
cannot express that one policy set is equivalent to another, or that one is strictly more
permissive.

In this paper, we introduce a logic in which we can reason about non-static (i.e.,
dynamic) policies. The logic is based on Dynamic Logic of Permission (DLP) defined
by van der Meyden [21], which is itself based on Propositional Dynamic Logic (PDL)
[9]. DLP is used to reason about a fixed policy set that governs an application whose
behavior is modeled by a transition system. For example, in DLP, we can formulate the
query ‘Is Alice permitted to enter the adult fiction section’; then, we can answer the
query based on the particular application and policy set. DLP is a very expressive logic.
It was developed to support the kind of reasoning found in intelligent legal information
systems. To do so, it considers permissions to be associated with transitions (any given
state transition is either permitted or forbidden), and provides two different operators
to query whether actions are permitted: an action is permitted if there is a possible
execution of the action using only permitted transitions, and it is freely permitted if
all possible executions of the action use only permitted transitions. For many computer
applications, this distinction is not necessary. (Indeed, the examples we use in this paper
do not use free permissions.) However, by extending DLP, our logic remains appropriate
for reasoning about policies in legal information systems. We extend DLP by adding the
ability to mention and to modify the policies of the applicationin the formulas. This lets

us write queries such as ‘Assuming we change the policy so that Alice is treated as an
adult, may she enter the adult fiction section’. Moreover, we can determine the truth
of such conditional queries with respect to the particular application and the original
policy set.

The uses for our logic go well beyond reasoning about basic conditionals. In our
logic, we can update a policy set (i.e., add or remove policies) within a query at arbi-
trary points. This allows us to reason about the execution of a scenario which begins
under one policy set and completes under a modified version. For example, suppose a
university has a policyp that says no one can pass her thesis defense, unless she has
fulfilled her minor requirements. After witnessing several students with finished theses,
scrambling to meet minor requirements, the university decides that the policy should
be changed. The new policy says that minor requirements must be met for a student to
pass her preliminary exam; since passing the preliminary exam is already a requirement
for passing the defense, the univerisity removesp from its policy set. Now, under ei-
ther policy set, a student cannot pass her defense unless she has completed her minor
requirements. However, a student with fortunate timing can avoid the requirement (she
passes the preliminary exam under the old policy and defends under the new). We can
use our framework to detect this type of consequence.

The rest of the paper is organized as follows. In the next section we review transition
systems. Then, we present both the syntax and the semantics of our logic. We finish
the section by applying our logic to the situations in Examples 1.1, 1.2, and 1.3. In
Section 3 we give a sound and complete axiomatization for our logic. The satisfiability
problem is considered in Section 4, where we show that our logic is decidable. In fact,
the satisfiability problem is decidable in nondeterministic exponential time. (We suspect
that the problem is decidable in deterministic exponential time, which is the complexity
of the satisfiability problem for PDL.) Related work is discussed in Section 5 and we
conclude in Section 6. For reasons of space, the proofs are left to the full paper.

2 A Logic for Reasoning about Dynamic Policies

Application Model. We assume the application is modeled by a set of states, a set of
labelled transitions, and a set of policies. A state is a snapshot of the application in
time. A state can, for instance, record the value of all the variables in the application.
Transitions between the states represent progress of the application. Each transition is
labelled by an action; intuitively, a transition between statess ands′ labelled with an
actiona means that by performinga in s, the application might progress tos′. Note
that actions can be nondeterministic, in the sense that more than one transition from
the same state can be labelled with the same action. The set of policies tells us which
transitions are permitted.

As an example of these concepts, suppose Alice wants a file and can obtain it either
by downloading it from the network or copying it from a disk. We can capture this
scenario in a model that has three states,s1, s2, ands3, where Alice wants the file
in s1 and has the network version of the file ins2 and the disk version of the file in
s3. The model has two transitions,t andt′, wheret goes froms1 to s2 and is labeled
‘download from network’, whilet′ goes froms1 to s3 and is labeled ‘download from

disk’. Now supposet′ is permitted andt is not, according to the application’s policies.
(For instance, the policy may want to restrict access to the network.) Then if Alice wants
the file, she is permitted to copy it from the disk, but is not permitted to download it
from the network.

Syntax. We now introduce the syntax ofDLPdyn, which is our logic for reasoning
about dynamic policies. (We assume the policies are part of an application whose be-
havior is modeled by a transition system.)DLPdyn is an extension of DLP, which is
itself an extension of PDL. As in PDL, we assume a set of primitive actions,Act0, and
then provide combinators for building more complex actions from the primitive ones.

Syntax for Actions:

a ∈ Act0 primitive action
α, β ::= action

a primitive action
α;β sequential
α ∪ β alternative
α∗ repetition

The actionα;β represents the sequential composition ofα andβ; it means ‘first execute
α, then executeβ’. The actionα ∪ β represents the nondeterministic choice ofα or β;
it means ‘either executeα or executeβ’. Finally, the actionα∗ represents the repeated
execution of actionα, some nondeterministically chosen number of times (possibly
zero).

As with actions, the formulas of our logic are written by combining primitives. In
this case, however, the primitives are propositions from a setΦ0.

Syntax for Formulas:

p ∈ Φ0 primitive proposition
ϕ,ψ, ρ ::= formula

p primitive proposition
¬ϕ negation
ϕ ∧ ψ conjunction
〈α〉ϕ effect of actionα
Perm(α)ϕ permission
FreePerm(α)ϕ free-choice permission
Grant(ρ1, ρ2)ϕ granting permissions
Revoke(ρ1, ρ2)ϕ revoking permissions

The negation (¬) and conjunction (∧) operators are the standard ones from propositional
logic. We abbreviate¬(¬ϕ ∧ ¬ψ) asϕ ∨ ψ and abbreviate¬ϕ ∨ ψ asϕ ⇒ ψ. Also,
we definetrue to be the formulap∨¬p, wherep is a fixed primitive proposition inΦ0.
false is¬true. We define the sublanguageΦp of propositional formulasof our logic; it
is the set of primitive propositions inΦ0 closed under negation and conjunction. We let
ρ range over propositional formulas inΦp.

The PDL operator〈α〉ϕ says by doingα, the application can progress to a state
satisfyingϕ. We abbreviate¬〈α〉¬ϕ as [α]ϕ. Observe that the formula[α]ϕ means
after any execution ofα, the formulaϕ is true.

The DLP operators, which we write asPerm(α)ϕ andFreePerm(α)ϕ, capture two
different types of permissions. The formulaPerm(α)ϕ means there is at least one ex-
ecution ofα that is both permitted and leads to a state whereϕ is true. For example,
consider the formulaPerm(download∪ copy)haveFile. It says that there is a way to
get the file legitimately either by downloading it from the network or copying it from
the disk, however, it does not say which of the two actions is permitted. The formula
FreePerm(α)ϕ meansall executions ofα that lead to a state satisfyingϕ are permitted.
For example, consider the formulaFreePerm(download∪ copy)haveFile. It says that
every way of obtaining the file by downloading it from the network or copying it from
the disk is legitimate.

Finally, we introduce the operatorsGrant(ρ1, ρ2)ϕ andRevoke(ρ1, ρ2)ϕ. The for-
mula Grant(ρ1, ρ2)ϕ meansϕ holds, if we assume every transition from a state satis-
fying ρ1 to a state satifyingρ2 is permitted. Conversely, the formulaRevoke(ρ1, ρ2)ϕ
meansϕ holds, if we assume that every transition from a state satisfyingρ1 to a state
satifyingρ2 is not permitted. The only restriction on these operators is thatρ1 andρ2

must be propositional formulas. Roughly speaking, this limitation means that we can-
not easily reason about permissions that are defined in terms of other permissions. For
example, we cannot say ‘ϕ holds if whenever someone is permitted to download a file
from the network, she is permitted to copy it from the disk’. (We believe that none of
our results fundamentally depend on this restriction.)

Semantics. The semantics of our logic is based on Kripke structures, which are the
formal models of the applications. Intuitively, a Kripke structure encodes a transition
system, along with the characteristics of each state (i.e., which primitive propositions
are true in each state). A Kripke structureM = (S, π, τ) is a set of statesS, an inter-
pretationπ used to interpret the primitive propositions, and an interpretationτ used to
interpret the primitive actions. More specifically, for a primitive propositionp, π(p) is
the set of states wherep holds, and for a primitive actiona, τ(a) is the set of transitions
s1s2 that could occur by doinga.

We associate every (not necessarily primitive) actionα with a set of finite traces,
where a trace is a sequence of states. Roughly speaking, a trace is in the set if there is an
execution of the action that travels through each of the states in the trace, in turn. The
set of tracesτs(α) includes every trace that could be encountered during an execution
of α from states. The following table defines this notion formally

Sequences of States Associated with Actions:τs(α)

τs(a) , {s1s2 ∈ τ(a) | s1 = s}
τs(α;β) , {σαs′σβ | σαs′ ∈ τs(α), s′σβ ∈ τs′(β)
τs(α ∪ β) , τs(α) ∪ τs(β)
τs(α∗) , {ss} ∪ τs(α) ∪ τs(α;α) ∪ τs(α;α;α) ∪ . . .

This definition ofτs essentially yields the trace semantics of PDL [25].

To establish the truth of our formulas, we need to keep track of which transitions are
assumed to be permitted. We store this information in apolicy setP , which is simply
a set of transitions. A transition is assumed to be permitted, according toP , if and
only if it is in P . If a transition is inP , then we say it isP-green. Otherwise, we say
the transition isP-red. More generally, a sequence of transitions isP -green, if every
transition in the sequence isP -green. Otherwise, the sequence isP -red. Notice that
this definition suggests that an action sequence is illegal if any action in the sequence is
illegal.

A formula ϕ is true (or satisfied) in a states of a modelM given a policy setP ,
written (M, s, P) |= ϕ, if it is true according to the following definition, whereσf
denotes the final element ofσ for any nonempty finite sequenceσ.

Satisfaction Relation:(M, s, P) |= ϕ

(M, s, P) |= p if s ∈ π(p)
(M, s, P) |= ¬ϕ if (M, s, P) 6|= ϕ
(M, s, P) |= ϕ ∧ ψ if (M, s, P) |= ϕ and(M, s, P) |= ψ
(M, s, P) |= 〈α〉ϕ if for someσ ∈ τs(α), (M,σf , P) |= ϕ
(M, s, P) |= Perm(α)ϕ if for someP -greenσ ∈ τs(α), (M,σf , P) |= ϕ
(M, s, P) |= FreePerm(α)ϕ if for all σ ∈ τs(α) such that(M,σf , P) |= ϕ,

σ is P -green
(M, s, P) |= Grant(ρ1, ρ2)ϕ if (M, s, P ∪ P ρ1,ρ2) |= ϕ
(M, s, P) |= Revoke(ρ1, ρ2)ϕ if (M, s, P \ P ρ1,ρ2) |= ϕ

whereP ρ1,ρ2 , {s1s2 | (M, s1, P) |= ρ1, (M, s2, P) |= ρ2}

A formulaϕ is true at a states of a modelM , written(M, s) |= ϕ, if for any policy set
P , (M, s, P) |= ϕ. We can easily check that a propositional formula does not require
the set of policies to determine its truth value. Formally, ifρ is a propositional formula,
then (M, s, P) |= ρ for someP if and only if (M, s) |= ρ. It follows thatP ρ1,ρ2

is {(s1, s2) | (M, s1) |= ρ1, (M, s2) |= ρ2}, becauseρ1 and ρ2 are propositional
formulas. If(M, s) |= ϕ for all s ∈ S, then we sayϕ is valid inM , and writeM |= ϕ.
Finally, if M |= ϕ for all Kripke structuresM , we sayϕ is valid, and write|= ϕ. We
now revisit the examples given in the introduction.

Example 2.1.In Example 1.1, we present a scenario in which the librarian Libby needs
to decide whether or not to give Alice an adult patron card. To make this example more
concrete, suppose that having an adult card means Alice may do any primitive action in
a setActA. We now show that we can use our logic to help Libby make an informed
decision. To do this, suppose

– M is the model that represents the library system andP is the library’s current
policy set.

– A state inM satisfies the primitive proposition ‘Alice acted as an adult’ if and only
if every transition into the state is labeled with an action inActA.

– For ease of exposition, we assume that either all transitions into a state are labeled
with an action inActA or none are. (Note that if this is not true, we could easily
create a model, equivalent toM , that satisfies the condition.)

An actionα that Alice may not do according toP would be allowed according to the
modified policy set, if for some states in M

(M, s, P) |= ¬Perm(α)true ∧ Grant(true, ‘Alice acted as an adult’)Perm(α)true.

By considering each actionα of interest, we can determine the consequences of Libby
granting Alice’s request.

Example 2.2.Suppose the company in Example 1.2 suspects that every permission they
care about is either granted by the Blue Cross Blue Shield policies, or is not granted by
either set of policies. To test this hypothesis:

– Let PA andPB be the Aetna and Blue Cross Blue Shield policies, respectively.
– LetM be a Kripke structure capturing the states of the application and the possible

transitions. For example, a state could represent the flu season, and a transition from
the state could represent Alice getting a free flu shot. We assume that every state
can be uniquely described by a propositional formula; in other words, for every
states, there is a propositional formulaρs which is true only ats.

– Let PolA(ϕ) be an abbreviation forGrant(ρs1 , ρs′1) . . .Grant(ρsk , ρs′k)ϕ where
PA = {s1s

′
1, . . . , sks

′
k}. Let PolB(ϕ) be the corresponding abbreviation based

onPB .
– LetϕdesP be a formula that represents the desired permissions. As a simple example,
ϕdesP could bePerm(Alice gets free flu shot)true, which means there is a way for
Alice to get a free flu shot.

The company’s hypothesis is correct if

M |= (PolA(ϕdesP))⇒ (PolB(ϕdesP)).

Example 2.3.Consider Example 1.3.

– Let PLP be the set of policies that Alice created to enforce the principle of least
privilege.

– LetM be a Kripke structure capturing the states of the application and the possible
transitions. As in the previous example, we assume that every state can be uniquely
described by a propositional formula; in other words, for every states, there is a
propositional formulaρs which is true only ats.

– Let PolP (ϕ) be an abbreviation forGrant(ρs1 , ρs′1) . . .Grant(ρsk , ρs′k)ϕ, for any
policy setP = {s1s

′
1, . . . , sks

′
k}.

– LetϕjobP be a formula that represents the permissions required for users to do their
job. As a simple example,ϕjobP could bePerm(edit user’s own files)true, which
means users have a way to edit their own files.

We want to verify thatPLP satisfies the principle of least privilege. However, this is a
bit tricky, because there are at least two interpretations of the principle. The first says
thatPLP satisfies the principle of least privilege if we cannot remove any policy from
PLP and still allow the users to do their job. According to this definition,PLP satisfies
the principle of least privilege if and only if

M |= PolPLP

(
ϕjobP ∧

∧
ss′∈PLP

Revoke(ρs, ρs′)¬ϕjobP

)
.

A second interpretation is the stronger statement thatPLP satisfies the principle of least
privilege if it lets the users do their job, and there is no smaller set of policies that does.
Assuming that the Kripke structureM is finite, we can formalize this interpretation as
follows. The policy setPLP satisfies the principle of least privilege if and only if

M |= PolPLP (ϕjobP) ∧
∧

P∈PM

PolP (¬ϕjobP),

wherePM = {P | P is a policy set overM , |P | < |PLP |}, the set of all policy sets
with fewer elements thanPLP . The key observation is not that there are many interpre-
tations of the principle of least privilege, but that we can capture the different interpre-
tations in our framework.

Before leaving this section, we should emphasize thatGrant(ρ1, ρ2)ϕ means ‘ϕ
holds under the assumption that everysingle transition from a state satisfyingρ1 to a
state satisfyingρ2 is permitted’. This does not mean that we assume allsequencesof
transitions from states satisfyingρ1 to states satisfyingρ2 are permitted. This conse-
quence of our logic seems particularly desirable. To see why consider the statement
‘any transition from a state in which Alice is in school to one in which she is home is
permitted’. It might follow from the statement that Alice may bike home from school
or even take a cab. However, we should not conclude from the statement that Alice is
allowed to bike from school to the docks, convince some disreputable people to buy
her beer, stagger home, and then beat-up her brother, despite the fact that the action
sequence begins with Alice at school and ends with Alice at home.

3 A Sound and Complete Axiomatization

In this section we present a sound and complete axiomatization for our logic. Recall
that a formulaϕ is provableif it can be proven using the axiom system’s axioms and
rules of inferences. If every provable formula is valid, then the axiom system issound.
If every valid formula is provable, then the axiom system iscomplete.

Our axiom systemAX can be divided into six parts. The first set of axioms accounts
for propositional reasoning.

Axioms for Propositional Reasoning:

Taut. All instances of propositional tautologies
MP. Fromϕ andϕ⇒ ψ inferψ

As an example, an instance ofTaut is ϕ ∨ ¬ϕ, for any formulaϕ. Axiom Taut can be
replaced by a sound and complete axiomatization for propositional tautologies, such as
the one given in Mendelson [20].

The second set of axioms accounts for the PDL modality〈 〉.

Axioms for 〈 〉:
A1. 〈α〉false ⇔ false

A2. 〈α;β〉ϕ⇔ 〈α〉〈β〉ϕ
A3. 〈α ∪ β〉ϕ⇔ 〈α〉ϕ ∨ 〈β〉ϕ
A4. 〈α∗〉ϕ⇔ ϕ ∨ 〈α;α∗〉ϕ
A5. 〈α〉(ϕ ∨ ψ)⇔ 〈α〉ϕ ∨ 〈α〉ψ
A6. ϕ ∧ [α∗](ϕ⇒ [α]ϕ)⇒ [α∗]ϕ
A7. Fromϕ infer [α]ϕ

This is essentially the axiomatization for PDL due to Segerberg [28]. AxiomsA1 through
A5 and axiomA7 are straightforward. AxiomA6 is an induction axiom that captures
the infinitary behavior of the∗ operator.

The third set of axioms accounts for the DLP modalitiesPerm andFreePerm.

Axioms for Perm and FreePerm:

P1.Perm(α)ϕ⇒ 〈α〉ϕ
P2.Perm(α;β)ϕ⇔ Perm(α)Perm(β)ϕ
P3.Perm(α ∪ β)ϕ⇔ Perm(α)ϕ ∨ Perm(β)ϕ
P4.Perm(α∗)ϕ⇔ ϕ ∨ Perm(α;α∗)ϕ
P5.Perm(α)(ϕ ∨ ψ)⇔ Perm(α)ϕ ∨ Perm(α)ψ
P6.ϕ ∧ ¬(Perm(α∗)¬(ϕ⇒ ¬Perm(α)¬ϕ))⇒ ¬Perm(α∗)¬ϕ
P7. [α]¬ϕ⇒ FreePerm(α)ϕ
P8.FreePerm(α;β)ϕ⇔ FreePerm(α)〈β〉ϕ ∧ [α]FreePerm(β)ϕ
P9.FreePerm(α ∪ β)ϕ⇔ FreePerm(α)ϕ ∧ FreePerm(β)ϕ
P10.FreePerm(α∗)ϕ⇔ FreePerm(α;α∗)ϕ
P11.FreePerm(α)(ϕ ∨ ψ)⇔ FreePerm(α)ϕ ∨ FreePerm(α)ψ
P12.[α∗]FreePerm(α)〈α∗〉ϕ⇒ FreePerm(α∗)ϕ
P13.FreePerm(α)ϕ ∧ 〈α〉ϕ⇒ Perm(α)ϕ
P14.Perm(α)ϕ ∧ [α](ϕ⇒ ψ)⇒ Perm(α)ψ
P15.FreePerm(α)ψ ∧ [α](ϕ⇒ ψ)⇒ FreePerm(α)ϕ

These axioms are due to van der Meyden [21]. AxiomsP1–P6andP7–P12correspond
closely to axiomsA1–A6, indicating the tight relationship between the PDL and DLP
modalities. (This relationship is further clarified by Csirmaz [3].) Note that axiomP6
uses the dual ofPerm(α)ϕ, written as¬Perm(α)¬ϕ. Axioms P13–P15 capture the
interactions between the different modalities.

The fourth set of axioms concerns the behavior of theGrant operator.

Axioms for Grant:

G1. Grant(ρ1, ρ2)(ϕ ∧ ψ)⇔ Grant(ρ1, ρ2)ϕ ∧ Grant(ρ1, ρ2)ψ
G2. Grant(ρ1, ρ2)¬ϕ⇔ ¬Grant(ρ1, ρ2)ϕ
G3. Grant(ρ1, ρ2)〈α〉ϕ⇔ 〈α〉Grant(ρ1, ρ2)ϕ
G4. Grant(ρ1, ρ2)Grant(ρ3, ρ4)ϕ⇔ Grant(ρ3, ρ4)Grant(ρ1, ρ2)ϕ
G5. Fromρ3 ⇒ ρ1 andρ4 ⇒ ρ2 infer Grant(ρ1, ρ2)Grant(ρ3, ρ4)ϕ⇔ Grant(ρ1, ρ2)ϕ
G6. Grant(false, ρ)ϕ⇔ ϕ
G7. Grant(ρ, false)ϕ⇔ ϕ
G8. Grant(ρ1, ρ2)p⇔ p for primitive propositionsp

G9. Grant(ρ1 ∨ ρ2, ρ3)ϕ⇔ Grant(ρ1, ρ3)Grant(ρ2, ρ3)ϕ
G10.Grant(ρ1, ρ2 ∨ ρ3)ϕ⇔ Grant(ρ1, ρ2)Grant(ρ1, ρ3)ϕ
G11.Grant(ρ1, ρ2)(ρ1 ∧ 〈a〉ρ2)⇒ Grant(ρ1, ρ2)(Perm(a)ρ2) for primitive actionsa
G12.Grant(ρ1, ρ2)Perm(α)ϕ⇔ Grant(ρ1, ρ2)Perm(α)Grant(ρ1, ρ2)ϕ
G13.Grant(ρ1, ρ2)FreePerm(α)ϕ⇔ Grant(ρ1, ρ2)FreePerm(α)Grant(ρ1, ρ2)ϕ
G14.Fromϕ infer Grant(ρ1, ρ2)ϕ

Axioms G1–G3 capture the behavior ofGrant under conjunctions, negations, and the
PDL modality. AxiomG4 says that the order in which permissions are granted is ir-
relevant. The inference ruleG5 allows a permission to be disregarded if it is already
implied by a permission that was granted earlier in the analysis. AxiomsG4 andG5 to-
gether imply that ifρ1, ρ2 are respectively equivalent toρ3, ρ4, thenGrant(ρ1, ρ2)ϕ⇔
Grant(ρ3, ρ4)ϕ. Axioms G6 throughG8 say that an occurrence of theGrant operator
can be removed, if it clearly doesn’t affect the truth of the formula. AxiomsG9 andG10
capture the fact that in some sense permission grants are cumulative. Finally, Axioms
G11 throughG13 capture the relationship between granting permissions and the other
permission modalities.

The fifth set of axioms concerns the behavior of theRevoke operator.

Axioms for Revoke:

R1. Revoke(ρ1, ρ2)(ϕ ∧ ψ)⇔ Revoke(ρ1, ρ2)ϕ ∧ Revoke(ρ1, ρ2)ψ
R2. Revoke(ρ1, ρ2)¬ϕ⇔ ¬Revoke(ρ1, ρ2)ϕ
R3. Revoke(ρ1, ρ2)〈α〉ϕ⇔ 〈α〉Revoke(ρ1, ρ2)ϕ
R4. Revoke(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ⇔ Revoke(ρ3, ρ4)Revoke(ρ1, ρ2)ϕ
R5. Fromρ3 ⇒ ρ1 andρ4 ⇒ ρ2 infer

Revoke(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ⇔ Revoke(ρ1, ρ2)ϕ
R6. Revoke(false, ρ)ϕ⇔ ϕ
R7. Revoke(ρ, false)ϕ⇔ ϕ
R8. Revoke(ρ1, ρ2)p⇔ p for primitive propositionsp
R9. Revoke(ρ1 ∨ ρ2, ρ3)ϕ⇔ Revoke(ρ1, ρ3)Revoke(ρ2, ρ3)ϕ
R10.Revoke(ρ1, ρ2 ∨ ρ3)ϕ⇔ Revoke(ρ1, ρ2)Revoke(ρ1, ρ3)ϕ
R11.Revoke(ρ1, ρ2)(ρ1 ∧ [a]ρ2)⇒ Revoke(ρ1, ρ2)(¬Perm(a)ρ2)

for primitive actionsa
R12.Revoke(ρ1, ρ2)Perm(α)ϕ⇔ Revoke(ρ1, ρ2)Perm(α)Revoke(ρ1, ρ2)ϕ
R13.Revoke(ρ1, ρ2)FreePerm(α)ϕ⇔ Revoke(ρ1, ρ2)FreePerm(α)Revoke(ρ1, ρ2)ϕ
R14.Fromϕ infer Revoke(ρ1, ρ2)ϕ

These axioms are essentiallyG1–G14, with Grant replaced byRevoke. The only ex-
ception isR11, which says that an action corresponding to a revoked transition is not
permitted.

Finally, the last set of axioms capture the interaction between permission grants and
permission revocations.

Interaction Axioms for Grant and Revoke:

I1. Grant(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ⇔
Revoke(ρ3, ρ4)Grant(ρ1, ρ2 ∧ ¬ρ4)Grant(ρ1 ∧ ¬ρ3, ρ2)ϕ

I2. Revoke(ρ1, ρ2)Grant(ρ3, ρ4)ϕ⇔
Grant(ρ3, ρ4)Revoke(ρ1, ρ2 ∧ ¬ρ4)Revoke(ρ1 ∧ ¬ρ3, ρ2)ϕ

Roughly speaking, axiomI1 says that granting some permissionsP1 and then revoking
other permissionsP2 is equivalent to first revoking the permissionsP2, and then grant-
ing the permissions inP1 that would not have been revoked byP2. A similar explanation
applies toI2. Note that it follows fromI1 andG6–G7 that if ρ1 ⇒ ρ3 andρ2 ⇒ ρ4

are tautologies, thenGrant(ρ1, ρ2)Revoke(ρ3, ρ4)ϕ is equivalent toRevoke(ρ3, ρ4)ϕ.
In other words, granting permissions that are immediately revoked is equivalent to never
granting the permissions at all. Again, a similar argument holds for axiomI2.

As discussed at the end of Section 2, a prerequisite for the soundness of these ax-
ioms is that a primitive action must be mapped to single transition. More specifically, the
soundness of AxiomsG11andR11depend on this restriction. To see why, consider the
(violating) structureM that has three statess1, s2, s3, with π(p) = {s1}, π(q) = {s3},
τ(a) = {s1s2}, τ(b) = {s2s3}, τ(c) = {s1s3}, and τ(d) = {s1s2s3}. Clearly,
(M, s1,∅) |= Grant(p, q)(p ∧ 〈d〉q) holds. However, we donot have(M, s1,∅) |=
Grant(p, q)Perm(d)q, since under the policy set∅p,q, the sequences1s2s3 is red.
Therefore, axiomG11 cannot be sound, unless every primitive action is mapped to
a single transition. A similar argument holds for axiomR11.

Theorem 3.1. The axiomatizationAX is sound and complete forDLPdyn with respect
to Kripke structures.

To establish completeness, it is possible, although not at all immediate, to use an ap-
proach similar to that used by Kozen and Parikh [15] to prove completeness of the ax-
iomatization for PDL. (This approach was also used by van der Meyden [21] to prove
completeness of DLP.) We first note that completeness is equivalent to the statement
that all consistent formulas are satisfiable. Recall that a formulaϕ is consistentif the
formula¬ϕ is not provable and a formulaϕ is satisfiableif there exists a Kripke struc-
tureM , a states of that structure, and a policyP such that(M, s, P) |= ϕ. So, we
can prove completeness if for any consistent formulaϕ, we can construct a model that
satisfies it. We construct this model for an arbitrary, consistent formulaϕ, by taking sets
of subformulas ofϕ to be states. Details are given in the full paper.

4 Complexity

Having described a sound and complete axiomatization for our logic, we now turn to the
complexity of the satisfiability problem. (Recall that the satisfiability problem asks if
there is a a Kripke structureM , a states inM , and a policyP such that(M, s, P) |= ϕ,
for a given formulaϕ.) Because our logic extends PDL, our decision problem is at least
as difficult as PDL’s. Therefore, our decision problem has an EXPTIME lowerbound
[5].

To find an upperbound, we first prove a small model theorem that intuitively says
that if a formulaϕ is satisfiable, then it is satisfiable in a Kripke structure with a com-
paratively small number of states. Define the length|ϕ| of a formula to be the number
of symbols required to writeϕ.

Theorem 4.1. If ϕ is satisfiable, then(M, s, P) |= ϕ for a Kripke structureM =
(S, π, τ) with |S| ≤ 2|ϕ|

2
.

The following theorem shows that checking that a formula is satisfied in a particular
finite model can be done efficiently.

Theorem 4.2. There is an algorithm that decides(M, s, P) |= ϕ in time polynomial in
|M |, |P | and|ϕ|.

Using Theorems 4.1 and 4.2, we can establish the following upperbound.

Theorem 4.3. The decision problem forDLPdyn is in NEXPTIME.

Theorem 4.3 establishes thatDLPdyn is decidable. The theorem also implies a (pre-
viously unknown) bound on the decision problem of DLP. This result is not immediately
apparent, because the DLP models are more general than ours; they allow primitive ac-
tions to be mapped to sequences of transitions. However, it is a consequence of van der
Meyden’s completeness proof that any satisfiable DLP formula is satisfiable in a model
where primitive actions are mapped to single transitions. It follows from Theorem 4.3
that DLP is in NEXPTIME. We conjecture that the decision problem forDLPdyn is in
fact EXPTIME-complete, just like PDL [9]. It should be possible to adapt the deter-
ministic single exponential time algorithm given by Pratt [26], but this is left as future
work.

5 Related Work

To the best of our knowledge,DLPdyn is the first language explicitly designed to answer
the kind of questions we discussed in the introduction. There is, however, a significant
body of work on reasoning about permissions. There are fundamentally two approaches,
propositional modal logics and first-order logics.

Building on the work of von Wright [30], many people have based logics for rea-
soning about permissions on propositional modal logic [10]. These logics, which are
typically calleddeontic logics, interpret permission via an operatorPϕ, which can be
read ‘ϕ is permitted’, or ‘it is permitted to makeϕ true’. Unfortunately, a naive treat-
ment of permission as a modality leads to a number of counterintuitive results. Von
Wright [31] recognized that many paradoxes arise because the logics do not distinguish
between propositions and actions. More precisely, many paradoxes are a consequence
of applying permissions to formulas, instead of just actions.

One of the first languages to restrict permissions to actions is due to Meyer [22].
Meyer’s logic is PDL with additional modalities to reason about permissions. To in-
terpret permissions, he essentially divides the states in the model of the system into
good states and bad states; an action is permitted if it leads to a good state. Most of the
paradoxes of deontic logic disappear in this setting.

As discussed by van der Meyden [21], however, some paradoxes remain. In partic-
ular, reasoning about the permission of sequential actions is problematic, because the
logic assigns permissions only to states. For example, suppose that no one is allowed
to murder the president and, if someone does, then that person goes to jail. If the state
in which the murderer goes to jail is a good state, which intuitively it should be, then
Meyer’s logic says that anyone may murder the president, providing that he or she then
goes to jail. But no one may murder the president, so this is a paradoxical situation.
Another consequence of assigning permissions to states is that the logic cannot capture
subtle distinctions in the use of the term ‘permission’. In particular, the logic cannot
distinguish between the two types of permissions captured in our logic by the DLP op-
eratorsPerm andFreePerm. To address these issues, van der Meyden designed the logic
DLP.

Clearly, our work is an extension of DLP. One way to view the relationship between
DLPdyn and DLP is that it is akin to the relationship between propositional logic and
PDL. Propositional logic is used to reason about a single state, while PDL extends the
logic to reason about multiple states and the transition between them. Similarly, DLP
is used to reason about a single set of allowed transitions, whileDLPdyn extends DLP
to reason about multiple sets of allowed transitions, using the operatorsGrant(ρ1, ρ2)ϕ
andRevoke(ρ1, ρ2)ϕ to move from set to set.

Although we base our logic on DLP, there is a difference between our models and
the ones used by DLP. Specifically, DLP allows primitive actions to be assigned to
sequences of transitions; we impose the restriction that each primitive action is mapped
to a single transition. This restriction is necessary for the axiomatization that we give in
Section 3.

The second class of languages for reasoning about permissions are first-order log-
ics. In the Computer Science community, these languages are typically an extension
of Datalog [6], which is a tractable fragment of first-order logic. Approaches based on
Datalog include [4, 17, 14, 16, 18]. In these languages, the environment, which essen-
tially corresponds to our application models, is a conjunction of formulas of the form
∀x1, . . . , xn.(l1 ∧ . . . ∧ lk ⇒ lk+1), where eachli is a literal,lk+1 is a positive (i.e.,
non-negated) literal, and depending on the particular language, other restrictions might
apply. It is not clear whether or not our models can be encoded in their environments,
because of the restrictions on negation. (This also holds for approaches that are not
based on Datalog, such as [8].)

Although the first-order approaches might not be able to capture our models, they do
support variables. This allows their specifications to be more concise. It is interesting to
note, however, that XrML [2], which is a language that has recieved widespread support
in industry, assumes the domain of interest is finite.1 In other words, for any formula in
the logic, there is an admittedly longer formula that is variable-free. Thus, in practice,
it seems likely that variable-free languages are sufficiently expressive.

Finally, we should note that both the modal approaches and the first-order languages
typically assume that any action that is not permitted is forbidden. However, there are
exceptions [12, 1, 13, 8]. By allowing actions to be neither permitted nor forbidden, we

1 The XrML authorization algorithm, which determines if a permission follows from a set of
XrML policies, terminates only for finite domains.

can sensibly merge policies that govern the same system. In future work, we would like
to explore these possibilities within our framework.

6 Conclusion

In this paper, we identify a class of problems that are of practical interest and that have
not been addressed previously in the literature. Essentially, these problems arise when
there is not a single, fixed set of policies. Examples include comparing different policy
sets and understanding the consequences of an evolving policy set.

Not only have we found an interesting class of problems, our work shows that the
approaches for reasoning about single sets can be adapted to handle the new issues. We
were able to extend DLP to create a logic in which to compare policy sets and reason
about changing policies. To the best of our knowledge, ours is the first logic designed
explicitly for this purpose. By modifying existing proof techniques, we were able to
obtain a sound and complete axiomatization for the logic. Moreover, despite the added
expressiveness, the decision problem remains decidable.

As illustrated by Examples 2.1, 2.2, and 2.3, a key problem is verifying that a model
satisfies a given formula. Theorem 4.2 provides a general bound on the complexity of
the model checking problem. It would be interesting to investigate efficient techniques
to perform this verification.

Acknowledgments.Thanks to Joe Halpern for comments on an early draft of this paper.
This work was partially supported by NSF under grant CTC-0208535, by ONR under
grant N00014-02-1-0455, by the DoD Multidisciplinary University Research Initiative
(MURI) program administered by the ONR under grant N00014-01-1-0795, and by
AFOSR under grant F49620-02-1-0101.

References

1. J. Chomicki, J. Lobo, and S. Naqvi. A logic programming approach to conflict resolution in
policy management. InPrinciples of Knowledge Representation and Reasoning: Proc. Ninth
International Conference (KR ’00), pages 121–132, 2000.

2. ContentGuard. XrML: Extensible rights Markup Language. Available fromhttp://www.

xrml.org, 2001.
3. L. Csirmaz. Multi-level permission. Technical Report 90-25, DIMACS, 1990.
4. J. DeTreville. Binder, a logic-based security language. InProceedings of the 2002 IEEE

Symposium on Research in Security and Privacy, pages 95–103. IEEE Computer Society
Press, 2002.

5. M. J. Fisher and R. E. Ladner. Propositional dynamic logic of regular programs.Journal of
Computer and System Sciences, 18(2):194–211, 1979.

6. H. Garcia-Molina, J. D. Ullman, and J. Widom.Database Systems: The Complete Book.
Prentice Hall, 2002.

7. J. Glasgow, G. MacEwen, and P. Panangaden. A logic for reasoning about security.ACM
Transactions on Computer Systems, 10(3):226–264, 1992.

8. J. Y. Halpern and V. Weissman. Using first-order logic to reason about policies. InPro-
ceedings of the 16th IEEE Computer Security Foundations Workshop, pages 187–201. IEEE
Computer Society Press, 2003.

9. D. Harel, D. Kozen, and J. Tiuryn.Dynamic Logic. The MIT Press, 2000.
10. G. Hughes and M. Cresswell.An Introduction to Modal Logic. Methuen, 1972.
11. R. Iannella. Open Digital Rights Language (ODRL) version 1.1. Available fromhttp:

//www.w3.org/TR/odrl, 2002.
12. Y. Ioannidis and T. Sellis. Supporting inconsistent rules in database systems.Journal of

Intelligent Information Systems, 1(3/4):243–270, 1992.
13. S. Jajodia, P. Samarati, M. L. Sapino, and V. S. Subrahmanian. Flexible support for multiple

access control policies.ACM Transactions on Database Systems, 26(2):214–260, 2001.
14. T. Jim. SD3: A trust management system with certified evaluation. InProceedings of the

2001 IEEE Symposium on Research in Security and Privacy, pages 106–115. IEEE Com-
puter Society Press, 2001.

15. D. Kozen and R. Parikh. An elementary proof of the completeness of PDL.Theoretical
Computer Science, 14:113–118, 1981.

16. N. Li, B. N. Grosof, and J. Feigenbaum. Delegation Logic: A logic-based approach to dis-
tributed authorization.ACM Transaction on Information and System Security (TISSEC),
6(1):128–171, 2003.

17. N. Li and J. C. Mitchell. Datalog with constraints: A foundation for trust management
languages. InProceedings of the Fifth International Symposium on Practical Aspects of
Declarative Languages, volume 2562 ofLecture Notes in Computer Science, pages 58–73,
2003.

18. N. Li, J. C. Mitchell, and W. H. Winsborough. Design of a role-based trust-management
framework. InProceedings of the 2002 IEEE Symposium on Research on Security and
Privacy, pages 114–130, 2002.

19. L. T. McCarty. Permissions and obligations. InProceedings of IJCAI-83, pages 287–294,
1983.

20. E. Mendelson.Introduction to Mathematical Logic. Van Nostrand, New York, 1964.
21. R. van der Meyden. The dynamic logic of permission.Journal of Logic and Computation,

6(3):465–479, 1996.
22. J.-J. C. Meyer. A different approach to deontic logic: Deontic logic viewed as a variant of

dynamic logic.Notre Dame Journal of Formal Logic, 29(1):109–136, 1988.
23. J.-J. C. Meyer, H. Weigand, and R. Wieringa. A specification language for static, dynamic

and deontic integrity constraints. In J. Demetrovics and B. Thalheim, editors,Mathematical
Fundamentals of Database Systems, volume 346 ofLecture Notes in Computer Science,
1989.

24. C. Pfleeger.Security in Computing. Prentice-Hall, second edition, 1997.
25. V. Pratt. Process logic. InConference Record of the Sixth Annual ACM Symposium on

Principles of Programming Languages, pages 93–100. ACM Press, 1979.
26. V. R. Pratt. A practical decision method for propositional dynamic logic. InProceedings of

the 10th Symposium on Theory of Computing, pages 326–337. ACM Press, 1978.
27. R. Pucella and V. Weissman. A logic for reasoning about digital rights. InProceedings of

the 15th IEEE Computer Security Foundations Workshop, pages 282–294. IEEE Computer
Society Press, 2002.

28. K. Segerberg. A completeness theorem in the modal logic of programs.Notices AMS,
24(6):A–552, 1977.

29. R. J. Wieringa and J.-J. C. Meyer. Applications of deontic logic in computer science: A
concise overview. In J.-J. C. Meyer and R. J. Wieringa, editors,Deontic Logic in Computer
Science: Normative System Specification, chapter 2, pages 17–40. John Wiley & Sons, 1993.

30. G. H. von Wright. Deontic logic.Mind, 60:1–15, 1951.
31. G. H. von Wright. An essay in deontic logic and the general theory of action. InActa

Phiiosophica Fennica, volume 21. North Holland, 1968.

