
Object-Oriented Design Lecture 20
CSU 370 Fall 2008 (Pucella) Friday, Dec 5, 2007

Design Pattern: Observers

The last design pattern we will see this semester is a bit different than the last ones. It is
more architectural, in the sense that it pertains to how classes are put together to achieve a
certain goal.

The motivating scenario is as follows. Suppose we have an object in the system that is in
charge of generating news of interest for the rest of the application. For instance, perhaps
it is in charge of keep track of user input, and tells the rest of the application whenever the
user does something of interest. Or, it is in charge of maintaining a clock, and tells the rest
of the application whenever the clock ticks one time step. (Not coincidentally, this is the
scenario that occurs in Homework 6.) Is there a general approach for handling this kind of
thing?

If we analyze the situation carefully, you’ll notice that we have two sorts of entities around:
an observable that is in charge of generating or advertising items of interest to the rest of the
application, and the dual observers that are the parts of the application that are interested
in getting the news.

Sometimes, observables are called publishers, and observers are called subscribers.

Think about the operations that we would like to support on observers, first. Well, the main
thing we want an observer to be able to do is to be notified when a news item is published.
Thus, this calls for an observer implementing the following interface, parameterized by a
type E of values conveyed during the notification (e.g., the news item itself).� �

public interface Observer<E> {

public void notify (E arg);

}� �
What about the other end? What do we want an observable to do? First off, we need to
subscribe an observer, so that that observer can be notified when a news item is produced.
The other operation, naturally enough, is to notify all the subscribers that a news item has
been produced. When notifying a subscriber, we will also pass a value (perhaps the news
item in question). This leads to the following interface that an observable should implement,
parameterized over a type E of values to pass when notifying an observer.� �

public interface Observable<E> {

public void registerObserver (Observer<E> ob);

1

public void notifyObservers (E arg);

}� �
And that’s it. These two interfaces together define the Observer design pattern.

Let’s look at an example. Suppose that the observable we care about is a loop that simply
queries an input string from the user, and notifies all the observers that a new string has
been input, passing that string along as the notification value.

Here is the class for the input loop, implementing the Observable<String> interface.� �
public class InputLoop implements Observable<String> {

private LinkedList<Observer<String>> observers;

private InputLoop () {

observers = new LinkedList<Observer<String>>();

}

public static InputLoop create () {

return new InputLoop();

}

public void registerObserver (Observer<String> ob) {

observers.add(ob);

}

public void notifyObservers (String arg) {

for (Observer<String> item : this.observers) {

item.notify(arg);

}

}

private String getInput () {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in

));

String response = "";

try {

response = br.readLine();

if (response==null) {

return "";

}

2

} catch (IOException ioe) {

System.out.println("IO error reading from terminal\n");

System.exit(1);

}

return response;

}

public void loop () {

String response;

while (true) {

System.out.print("> ");

response = getInput();

notifyObservers(response);

}

}

}� �
The code for getInput is boilerplate code that performs the necessary magical invocations
required to read a string from the terminal. The loop method simply repeatedly queries a
string from the user, and notifies all observers of that string. Note that there is no way built
into the loop to actually terminate the loop. We’ll see how to deal with that shortly. The
observers are recorded in a LinkedList<Observer>, which is initially empty. Registering a
new observer is a simple matter of adding that observer to the list. Notifying the observers
is a simple matter of iterating over the list, calling the notify method of each observer in
the list.

Just to have something concrete, here is how we launch the loop.

InputLoop inLoop = InputLoop.create();

inLoop.loop ();

Of course, this does nothing useful. It simply repeatedly gets a string from the user, and
does absolutely nothing with it.

Let’s define some observers, than. The first observer is a simple observer that echoes the
input string back to the user. Since it is an observer and we want it to work with the
InputLoop class, it implements the Observer<String> interface:� �

public class PrintObserver implements Observer<String> {

private PrintObserver () { }

public static PrintObserver create () {

3

return new PrintObserver();

}

public void notify (String arg) {

System.out.println(" Input was: " + arg);

}

}� �
All the action is in the notify method.

Another observer we can define is one that checks whether the input string is a specific
string (in this case, the string quit), and does something accordingly (in this case, quit the
application).� �

public class QuitObserver implements Observer<String> {

private QuitObserver () {}

public static QuitObserver create () {

return new QuitObserver();

}

public void notify (String input) {

if (input.equals("quit")) {

System.exit(0);

}

System.out.println (" This was not a quit request");

}

}� �
Finally, a more general observer than can print a response for any particular input.� �

public class ResponseObserver implements Observer<String> {

private String seeThis;

private String respondThat;

private ResponseObserver (String si, String sa) {

seeThis = si;

respondThat = sa;

}

4

public static ResponseObserver create (String si, String sa) {

return new ResponseObserver(si,sa);

}

public void notify (String input) {

if (input.equals(seeThis)) {

System.out.println(" " + respondThat);

}

}

}� �
Now, if we register those observers before invoking the loop method of a newly created
InputLoop:

InputLoop inLoop = InputLoop.create ();

inLoop.registerObserver(PrintObserver.create());

inLoop.registerObserver(QuitObserver.create());

inLoop.registerObserver(ResponseObserver.create("hello",

"Well, hello back to you!"));

inLoop.registerObserver(ResponseObserver.create("1+1","2"));

inLoop.loop();

we get the following sample output:

> this is a string

Input was: this is a string

This was not a quit request

> help

Input was: help

This was not a quit request

> hello

Input was: hello

This was not a quit request

Well, hello back to you!

> 1+1

Input was: 1+1

This was not a quit request

2

> quit

Input was: quit

Now, have a look at Homework 6, especially the Clock class. While it does not implement
the Observable interface, it could, by interpreting an Action as an observer. (Indeed, an

5

Action is just like an observer, except it has a perform method instead of a notify method,
and no argument is exchanged.) The code is slightly more complicated there because we
not only allow observers to subscribe to a publisher, we also allow subscribed observers to
unsubscribe.

Addendum

I mentioned in class that it would be easy to add an observer that recognizes URLs and reads
off the corresponding web page. Here is such an observer, using some of the Java networking
libraries:� �

import java.net.*;

import java.io.*;

public class URLObserver implements Observer<String> {

private URLObserver () {}

public static URLObserver create () {

return new URLObserver();

}

public void notify (String input) {

if (input.startsWith("http://")) {

System.out.println(" Trying to read URL " + input);

try {

URL url = new URL(input);

BufferedReader in =

new BufferedReader(new InputStreamReader(url.openStream()));

String inputLine;

while ((inputLine = in.readLine()) != null)

System.out.println(inputLine);

in.close();

} catch (Exception e) {

System.out.println(" Error trying to read URL: "

+ e.getMessage());

}

}

}

}� �
Tossing it into the input loop:

6

InputLoop inLoop = InputLoop.create ();

inLoop.registerObserver(PrintObserver.create());

inLoop.registerObserver(QuitObserver.create());

inLoop.registerObserver(ResponseObserver.create("hello",

"Well, hello back to you!"));

inLoop.registerObserver(ResponseObserver.create("1+1","2"));

inLoop.registerObserver(URLObserver.create());

inLoop.loop();

and trying it out:

> http://www.ccs.neu.edu/home/riccardo/csu370/index.html

Input was: http://www.ccs.neu.edu/home/riccardo/csu370/index.html

This was not a quit request

Trying to read URL http://www.ccs.neu.edu/home/riccardo/csu370/index.html

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">

<html>

<head>

<title>CSU 370 - Fall 2008</title>

<link rel="alternate" type="application/rss+xml" title="CSU 370 - Fall 2008" href="news370.rss" />

<link rel="stylesheet" type="text/css" href="riccardo2.css">

</head>

<body>

<table cellspacing="0" cellpadding="1" border="0" bgcolor="#cccccc" width="100%"><tr><td>

<table cellspacing="1" cellpadding="0" border="0" width="100%">

<tr><td>

<table cellspacing="0" cellpadding="0" border="0" width="100%"><tr>

<td style="padding-left: 20px" align="left" valign="bottom">

<!-- Page Title -->

 <h1>CSU 370 Fall 2008

Object-Oriented Design</h1>

</td>

7

<!-- Page Middle -->

<tr>

<td>

<table cellspacing="1" cellpadding="2" border="0" bgcolor="#996666" width="100%">

<tr>

<td bgcolor="#eeeeee" style="padding-left: 10px">

<table cellpadding="2" cellspacing="5" border="0">

<tr>

and it continues on for a long time.

Slightly harder is to implement an observer that can read a URL and extracts text that
actually looks good printed out, by interpreting the HTML.

8

