
Object-Oriented Design Lecture 18
CSU 370 Fall 2008 (Pucella) Friday, Nov 21, 2008

A Model of Mutation in Java

We have been avoiding mutations until now; but there are there, in the Java system, for
better or for worse, especially in the libraries.

So let’s move towards understanding mutation. We already saw why mutation was problem-
atic: because an object can change under you, which can lead to hard-to-find bugs. Hence,
my advocacy of immutability. Immutable code is also interesting because it is easier to
parallelize.

Now let’s suppose that you have understood this issue about mutability, and that you accept
the ensuing risks. In other words, you decided to have some classes with mutable state (that
is, mutable fields).

First off, let me settle a minor detail. Even if you are okay with having mutable state, you
still want to keep your fields private, and provide selectors (and setters) for each field that
can mutate Why? Consider a variant of our Point class where fields are public:� �

public class Point {

public int xpos;

public int ypos;

// Suppose we care about points always being in the upper-right

// quadrant (i.e., with non-negative x & y coordinates)

private Point (int x, int y) {

if (x < 0 || y < 0) throw new IllegalArgumentException ("negative");

this.xpos = x;

this.ypos = y;

}

public static Point create (int x, int y) { return new Point(x,y); }

public int xPos () { return this.xpos; }

public int yPos () { return this.ypos; }

}� �
The constructor enforces the invariant that the coordinates of a point are always nonnegative.

1

However, if we allow unrestricted field access, then anyone can just change one of the bounds
and break the invariant. Which, in this case, can lead to points having negative coordinates,
invalidating the invariant we want to preserve.

By forcing users to use setters, we can check that the invariant is maintained whenever state
is changed:� �

public void setXPos (int x) {

if (x < 0) throw new IllegalArgumentException("negative");

this.xpos = x;

}

public void setYPos (int y) {

if (y<0) throw new IllegalArgumentException("negative");

this.ypos = y;

}� �
Therefore, I will expect you all to use explicit setters instead of making fields public even
when you want them mutable.

To work with mutation correctly, and help you track down bugs, you need to have a good
understanding of what changes when something changes! You update some field in some
class, what actually gets changed, and who else can see it?

My claim: to understand mutation, you need to have a working model of how Java represents
objects internally. It does not need to be an accurate model; it just needs to have good
predictive power.

Let me describe a basic model that answers the question: where do variables live? (The
question ‘where do methods live?’ is less interesting because methods are not state.)

Object Creation and Manipulation

When you create an object with a new statement, a block of memory is allocated in memory
(in the heap) representing the new object, which gets filled by the constructor. Here is how
we represent an object in the heap:

+------------+

| class |

|------------|

| non-static |

| fields |

+------------+

2

This representation does not have include the methods, because that’s not what I want to
focus on for now. The value returned by a constructor is actually an address, namely, the
address where the object lives in memory. (This is sometimes called an object reference.)
Thus, for instance, when you write

Point p1 = Point.create(0,10);

a new object is created in memory, say living at some address addr , and variable p1 holds
value addr . We can represent this as follows:

+-------------+

p1 *----------> | Point |

|-------------|

| xpos = 0 |

| ypos = 10 |

+-------------+

Now, when you pass an object as an argument to a method, what you end up passing is the
address of that object (that is, the value returned by the constructor). That is how objects
get manipulated.

As an example, consider a class Rect to represent rectangles. A rectangle is made up of two
points, representing two corners of the rectangle, respectively, in the plane.� �

public class Rect {

private Point fst;

private Point snd;

protected Rect (Point f, Point s) {

this.fst = f;

this.snd = s;

}

public static Rect create (Point f, Point s) {

return new Rect(f,s);

}

public Point first () { return this.fst; }

public Point second () { return this.snd; }

}� �
Thus, when you create a Rect object, passing in two points, you get as values of the fields
fst and snd in the created rectangle the addresses of the two points that were used to create

3

the rectangle in the first place.

Point p1 = Point.create(0,10);

Point p2 = Point.create(0,20);

Rect r1 = Rect.create(p2,p1);

+-------------+

p1 *----------> | Point | <------+

|-------------| |

| xpos = 0 | |

| ypos = 10 | |

+-------------+ |

|

+-------------+ |

p2 *----------> | Point | <--+ |

|-------------| | |

| xpos = 0 | | |

| ypos = 20 | | |

+-------------+ | |

| |

+-------------+ | |

r1 *----------> | Rect | | |

|-------------| | |

| fst = *----------+ |

| snd = *--------------+

+-------------+

To find the value of a field, you follow the arrows to the object that holds the field you are
trying to access. Thus, p1.xPos() looks up the xpos field in the object pointed to by p1.
Similarly, r1.second().yPos() access the ypos field of object returned by r1.snd(), which
itself can be found as field snd in the object pointed to by r1.

In particular, you see why if after creating the above we write

p1.setYPos (5);

System.out.println("y-coord of 2nd point of r1 = " + r1.second().yPos());

we get 5; intuitively, because p1 is the same object as the point stored as the second point
in r1. We call this phenomenon sharing. It is reflected by the fact that there are two arrows
pointing to an object in a diagram.

Compare the above by what gets constructed if we write:

Point p1 = Point.create(0,10);

4

Rect r1 = Rect.create(p1,p1);

+-------------+

p1 *----------> | Point | <------+

|-------------| <--+ |

| xpos = 0 | | |

| ypos = 10 | | |

+-------------+ | |

| |

+-------------+ | |

r1 *----------> | Rect | | |

|-------------| | |

| fst = *----------+ |

| snd = *--------------+

+-------------+

Here, the same point is used as first and second. Meaning, in particular, that if we update
field xpos of p1, both the first and the second points of r1 are also changed.

Static Fields

Static fields are fields annotated with the static qualifier. We haven’t discussed them until
now, because frankly they make no sense unless we have mutability. Intuitively, a static field
is associated with a class, as opposed to the instances of a class. A static field is a field that
is shared amongst all the instances of a class. So if one instance of the class updates the
fields, that update is seen by all other instances.

Suppose we create an alternate class RectCount instead of Rect that keeps track of the
number of rectangles that has been created. The code is straightforward:� �

public class RectCount {

private Point fst;

private Point snd;

private static int cnt = 0;

private RectCount (Point f, Point s) {

this.fst = f;

this.snd = s;

this.cnt = this.cnt + 1;

}

public static RectCount create (Point f, Point s) {

return new RectCount(f,s);

5

}

public Point first () { return this.fst; }

public Point second () { return this.snd; }

public int count () { return this.cnt; }

}� �
So what happens when this executes? Well, as I mentioned in the second week of classes, the
static variable cnt is somehow associated with the class, rather than with instances of the
class. In other words, there is a single copy of that variable around, and all the instances of
RectCount refer to that variable. We are going to model this by having the class field of an
object contain a point to a structure holding all the static fields of a class. This structure,
which is shared amongst all the objects of the class, is created automatically by Java when
you execute your program, before it yields control to your main method.

Point p1 = Point.create(0,10);

Point p2 = Point.create(0,20);

RectCount r1 = RectCount.create(p2,p1);

RectCount r2 = RectCount.create(p2,p1);

6

+-------------+

p1 *----------> | Point | <------+

|-------------| |

| xpos = 0 | |

| ypos = 10 | |

+-------------+ |

|

+-------------+ |

p2 *----------> | Point | <--+ |

|-------------| | | +-----------------+

| xpos = 0 | | | +--> | Class RectCount |

| ypos = 20 | | | | |-----------------|

+-------------+ | | | | cnt = 2 |

| | | +-----------------+

+-------------+ | | |

r1 *----------> | RectCount *-----------------------+

|-------------| | | |

| fst = *----------+ | |

| snd = *--------------+ |

+-------------+ | | |

| | |

+-------------+ | | |

r2 *----------> | RectCount *-----------------------+

|-------------| | |

| fst = *----------+ |

| snd = *--------------+

+-------------+

Note that both r1 and r2 have a link to the structure corresponding to class RectCount,
which holds the static variable cnt. So when you have a RectCount object and you access
its cnt field, Java sees it is not a variable in the object itself, so it will follow the “static”
pointer to the structure holding the statics, and look for the field there.

Inheritance [Not Covered in Class]

So that takes care of statics. What about inheritance? Well, when a class (say A) extends
another class (say B), it allocates not only a chunk of memory to hold the new object of type
A, but also allocates chunk of memory for an object of type B that will hold the variables
that are inherited from B. Thus, in the presence of inheritance, creating an object actually
ends up creating a chain of objects. Consider the following example:� �

public class CRect extends Rect {

7

private int clr;

protected (Point f, Point s, int c) {

super(f,s);

this.clr = c;

}

public static CRect create (Point f, Point s, int c) {

return new CRect(f,s,c);

}

public int color () {

return this.clr;

}

}� �
Executing the following:

Point p1 = Point.create(0,10);

Point p2 = Point.create(0,20);

CRect cr = CRect.create(p2,p1,4);

yields the following:

8

+-------------+

p1 *----------> | Point | <-------------------------+

|-------------| |

| xpos = 0 | |

| ypos = 10 | |

+-------------+ |

|

+-------------+ |

p2 *----------> | Point | <---------------------+ |

|-------------| | |

| xpos = 0 | | |

| ypos = 20 | | |

+-------------+ | |

| |

+----------+ +-----------+ | |

cr *----------> | CRect | +--> | Rect | | |

|----------| | |-----------| | |

| super *-------+ | fst = *-------+ |

|----------| | snd = *-----------+

| clr=4 | +-----------+

+----------+

Thus, when we invoke cr.second().yPos(), we follow the arrow from cr to find the CRect

object; it does not contain the snd field, so we follow the super arrow that points to the
inherited object, which does contain the snd field, and to get the y-coordinate point, we
follow the arrow to find the appropriate point object, and extract its ypos value.

The above diagram is grossly simplified, because, in particular, every object in Java extends
at least the Object class. Thus, if you really wanted to be accurate, you would have to
create inheritance arrows to objects of class Object, and so on, for every object. The above
model is sufficient for quick back-of-the-envelope computations, though.

Shallow and Deep Copies

As we saw in the first example, if we pass an object to a method, we are really passing the
address of the object to the method. And if the method just takes those values and store
them somewhere, then we can get sharing, which may or may not be what we want.

An example of sharing was the Rect.create(p1,p1) example earlier. The two fields fst and
snd of the newly created Rect object end up pointing to the same object, so that modifying
one of course leads to modifying the other.

9

It makes sense sometimes to create a new object that is an exact copy of an object, but does
not have any of its sharing. Of course, the best place to put this is as a method to the object
itself: “Object, copy thyself!”

Let’s write a method for Point that creates a new copy of a point:� �
public Point copy () {

return new Point(this.xpos, this.ypos);

}� �
Simple enough. And indeed, if we draw what’s happening when we write, say,

Point p1 = Point.create(0,10);

Point p2 = p1.copy();

Rect r1 = Rect.create(p2,p1);

we get what we expect, two distinct copies of the same object with the same field values:

+-------------+

p1 *----------> | Point | <------+

|-------------| |

| xpos = 0 | |

| ypos = 10 | |

+-------------+ |

+-------------+ |

p2 *----------> | Point | <--+ |

|-------------| | |

| xpos = 0 | | |

| ypos = 10 | | |

+-------------+ | |

| |

+-------------+ | |

r1 *----------> | Rect | | |

|-------------| | |

| fst = *----------+ |

| snd = *--------------+

+-------------+

However, if we implement a similar method in Rect, we have a problem:� �
public Rect copy () {

return new Rect(this.fst,this.snd);

}� �
10

And let’s execute the following code:

Point p1 = Point.create(0,10);

Point p2 = Point.create(0,20);

Rect r1 = Rect.create(p2,p1);

Rect r2 = r1.copy();

If you work through carefully what happens, you get the following:

+-------------+

p1 *----------> | Point | <------+

|-------------| |

| xpos = 0 | |

| ypos = 10 | |

+-------------+ |

|

+-------------+ |

p2 *----------> | Point | <--+ |

|-------------| | |

| xpos = 0 | | |

| ypos = 20 | | |

+-------------+ | |

+-------------+ | |

r1 *----------> | Rect | | |

|-------------| | |

| fst = *----------+ |

| snd = *--------------+

+-------------+ | |

| |

+-------------+ | |

r2 *----------> | Rect | | |

|-------------| | |

| fst = *----------+ |

| snd = *--------------+

+-------------+

Which is not quite what we may want. It does create a fresh copy of r1, but since fst and
snd are simply given the address of the object pointed to by fst and by snd are the same
in both r1 and r2.

So while r2 is a copy of r1, they are not fully disjoint. Rather, it is what we call a shallow
copy of r1. The “top level” of the objects are disjoint (in the sense that their fields live in
different places), but any sharing within the values held in the fields is preserved.

11

If we wanted a truly disjoint new rectangle, then we need to make what is called a deep copy,
that is, a copy that recursively deep copies (creating new objects) for every object held in
every variable, all the way down. Let’s implement a method deepCopy, in Rect:� �

public Rect deepCopy () {

Point newfst = this.fst.deepCopy();

Point newsnd = this.snd.deepCopy();

return new Rect(newfst, newsnd);

}� �
So, you see, to create a deep copy of a rectangle, we recursively deep copy all the values of
all the relevant fields, and create a new rectangle with those new values.

This also means that we need a deepCopy function in Point:� �
public Point deepCopy () {

return new Point(this.xpos, this.ypos;

}� �
Pleasantly, this is exactly the same as a shallow copy. That’s because copying an integer
does require us to create a new integer. (That’s a nice property of primitive types.) Let’s
keep the two methods around anyways, just to make clear that they have different roles,
even though they do the same thing.

Now, if we write:

Point p1 = Point.create(0,10);

Point p2 = Point.create(0,20);

Rect r1 = Rect.create(p2,p1);

Rect r2 = r1.deepCopy();

You get that r1 and r2 are truly disjoint: each of their fst and snd fields point to different
objects. I will let you draw the pictures, as a simple exercise.

12

