
Object-Oriented Design Lecture 16
CSU 370 Fall 2008 (Pucella) Friday, Nov 14, 2008

Generic Methods

A couple of lectures ago, we introduced generic interfaces, that is, interfaces of the form
FuncIterator<Integer> that are parameterized by a type:� �

public interface FuncIterator<T> {

public boolean hasElement ();

public T current ();

public FuncIterator<T> advance ();

}� �
We saw that this was a way to reuse code—it kept us from having to define multiple interfaces
that look the same except for the type of some of their operations.

To maximize code reuse in the presence of generic interfaces, however, we need a bit more
than what we have seen until now.

Suppose that I want you to write, in some class IteratorUtils, a method that reports how
many items can be provided by a given functional iterator. That is, I want a method that,
when given a functional iterator, tells you how many elements it can provide. The obvious
way to do that is just to repeatedly advance the iterator until it has no more elements. Let’s
make the method static. (Something for you to think about: why?)� �

...

public static int countElements (FuncIterator<Integer> it) {

FuncIterator<Integer> tmp = it;

int count = 0;

while (hasElement(tmp)) {

count = count + 1;

tmp = tmp.advance();

}

return count;

}� �
This code can be made shorter, of course, but I aim for clarity right now. Most importantly,
note that type of countElements: it takes a functional iterator that supplies integers. What

1



if we wanted to count elements supplied by a functional iterator that gives back Line, like
the one in your homework? We would have to write a different countElements methods
that can accept a functional iterator of type FuncIterator<Line>. Write it. What do you
notice immediately?

That’s right, if you write it up correctly, you’ll notice that the two countElements methods
are exactly the same, except for the type of their argument! Indeed, countElements do not
actually care what the type returned by the functional iterator is, it doesn’t do anything
with it. So countElements looks the same no matter what type of values is provided by the
functional iterator. That’s wasteful. We have to write the same code over and over again,
and that’s error prone and difficult to maintain, as we know.

(Exercise: can you think of an operation on functional iterators that does not have that
property—for instance, an operation on functional iterators that only makes sense if the
functional iterator provides integers?)

So how could we write countElements so that we don’t have to write multiple copies for
different types? Thinking about it, what you really want to say is that countElements takes
an argument of type FuncIterator<T> for any T. That’s what a generic method will let you
express.1 Here is the method as you could write it:� �

...

public static <T> int countElements (FuncIterator<T> it) {

FuncIterator<T> tmp = it;

int count = 0;

while (hasElement(tmp)) {

count = count + 1;

tmp = tmp.advance();

}

return count;

}� �
Things to note: the signature has that extra <T> at the front, before the return type. That’s
the indication that it’s a generic method, and the T in the angle brackets indicates what is
the type variable that you are using in the method definition. You can read <T> as: “for
any type T...” The T can be used in the types of the signature, and also in the body of the
method. (Because we want the local variable tmp to have the same type as the argument,
we declare it at type FuncIterator<T> in the first line of the method.)

In summary: generic methods are a way to reuse client code. (Only requiring you to write
a single client method to use some code that has a generic inteface.)

1Generic methods are also sometimes called parametrically-polymorphic methods, but that’s a mouthful.

2



Generic Classes

Generic interfaces, that is, interfaces that are parameterized by a type. They let us reuse
code when writing an interface. (We only have to write one parameterized interface instead
of multiple interfaces differing only by a type.)

What about defining generic classes? A class can be parameterized just like an interface,
using a similar declaration. As a simple example, consider the following (almost useless)
class:� �

public class Wrapper<T> {

private T content;

public Wrapper (T v) {

content = v;

}

public T getWrappedContent () {

return this.content;

}

}� �
The T appearing in the class declaration is a parameter to the class declaration. Think of it
as an argument to a method, except it’s an argument to a class. Every other occurrence of T
we can think of as being replaced by the argument supplied to the class when we instantiate
it. These occurrences of T can occur at pretty much all the places where a normal type can
be used. (There are some exceptions, which I will return to below.)

To use the class, you need to specify a type for the type parameter. That type is required to
be either a class type, interface type, or an array. For example, this creates a new Wrapper

instance around integers:

Wrapper<Integer> w = new Wrapper<Integer>(10);

Note that we need to add the type argument to the constructor as well.

(Work it out—Wrapper<Integer> can be thought of as the class definition where every
occurrence of T is replaced by Integer. This is a good working model, but be careful with
the details; the code is not actually duplicated, there is really only one definition of Wrapper
around, and the types, as soon as type checking is done, do not actually exist at runtime.
This means, in particular, that we cannot use a type argument in places where the type
would have a runtime existence, such as in a cast: uses such as

T x = (T) foo

are disallowed, as well as instanceof checks.)

3



Let’s look at a slightly more interesting example, stacks. The way we have defined them,
stacks can only contain integers. But that’s hardly general. And moreover, there is nothing
really specific about integers in the stacks we defined. The same implementation can handle
stacks with arbitrary content. It makes sense to parameterize the stack implementation by
the type of stack content.

Here is the code produced by the recipe we saw in class (not the one with inheritance—we’re
not dealing with inheritance here):� �

public abstract class Stack<T> {

public static <U> Stack<U> emptyStack () {

return new EmptyStack<U>();

}

public static <U> Stack<U> push (Stack<U> s, U i) {

return new PushStack<U>(s,i);

}

public abstract boolean isEmpty ();

public abstract T top ();

public abstract Stack<T> pop ();

}

// Concrete subclass for empty creator

class EmptyStack<T> extends Stack<T> {

public EmptyStack () { }

public boolean isEmpty () { return true; }

public T top () {

throw new IllegalArgumentException("EmptyStack<T>,top()");

}

public Stack<T> pop () {

throw new IllegalArgumentException("EmptyStack<T>.pop()");

}

}

// Concrete subclass for push creator

4



class PushStack<T> extends Stack<T> {

private T topVal;

private Stack<T> rest;

public PushStack (Stack<T> s, T v) {

topVal = v;

rest = s;

}

public boolean isEmpty () { return false; }

public T top () { return this.topVal; }

public Stack<T> pop () { return this.rest; }

}� �
Most of it is exactly as you would expect. Instead of working with Stack, we work with
Stack<T>, where T stands for the content of the stack, and of course the concrete subclasses
also are parameterized by the type of stack content. Note that PushStack<T> is a subclass
of Stack<T>—the same T.

The only subtlety here is the static methods in the abstract class Stack<T>. Because of the
way Java implements generics (this is an implementation detail that propagates up to the
language design level, never a good thing because it tends to introduce “special cases” to
worry about), the type parameter of a generic class is thought of as kind-of-special a field,
And fields in an object are not accessible from a static method of the class. (Partly, because a
static method needs to make sense even if you don’t have any instances of the class around!)
Here too. You should be able to invoke empty even if you have no stack around.

Look at the static method push. What does it really promise? It promises that if you give it
some stack Stack<U> for some type U, and a value of type U, it will give you back a new stack
of that same type Stack<U>. This is exactly what generic methods are meant to capture,
and this is why we use generic methods here for creators. Thus, if s1 is a stack of Booleans
(type Stack<Boolean>), then the method invocation:

Stack<Boolean> s2 = Stack.push(s1,true);

you can think of as executing as follows: when Stack.push executes, type variable T in the
static method gets bound to Boolean, and if you look at the code, will end up invoking the
PushStack<Boolean> constructor, creating a new stack of Booleans, as requested.

(Possible point of confusion: Note that the type variable occurring in the static method
is different than the type variable declared at the top of the class. That’s an unfortunate

5



source of confusion. We are parameterizing two things. At one level, we are parameterizing
the class Stack to allow different types of stacks. At another level, we are parameterizing
the static methods to allow them to work with parameterized stacks. In particular, because
the type parameters involved in the class and in the static methods play different roles, they
need not have the same name. Meditate on this.)

Exercise: (for you to think about) Try to come up with a “modified” recipe for working
with generic ADTs (that is, ADT which are parameterized by a type, such as a stack ADT
that can work with arbitrary content type). The recipe for the generic stack ADT should
give you back the code above.

6


