
Object-Oriented Design Lecture 15
CSU 370 Fall 2008 (Pucella) Friday, Nov 7, 2008

Multiple Inheritance and Interfaces

In Lecture 8, we saw a recipe for deriving an implementation from an ADT specification. I
pointed out a few problems with that approach in Lecture 9:

(1) Namespace pollution

(2) Extensibility

We talked about namespace pollution then, let’s talk about extensibility now.

Recall the measurable stacks we talked about last time. There is no problem whatsoever
applying the recipe to the measurable stack ADT. We just obtain an abstract class MStack
with subclasses EmptyMStack and PushMStack (say). Just like before, we want MStack to
be a subclass of Stack, which is easy to obtain: public abstract class MStack extends

Stack { ... }.
However, applying the recipe naively duplicates a lot of the code already appearing in the
Stack class. In particular, much of the code in EmptyMStack duplicates code in EmptyStack,
and similarly for PushMStack duplicating code in PushStack. Ideally, we would like to inherit
from EmptyStack in EmptyMStack and from PushStack in PushMStack. But if you think
about it, the resulting hierarchy looks like this:

Stack

/ | \

/ | \

EmptyStack | PushStack

| | |

| MStack |

| / \ |

| / \ |

EmptyMStack PushMStack

This hierarchy is not a tree, but a dag—a directed acyclic graph. We saw that Java doesn’t
like non-tree hierarchies, and that it forces us to use interfaces.

Let’s see why. Non-tree hierarchies are not an issue for subclassing. The problem is that
Java conflates subclassing and inheritance. Subclassing allows you to reuse code on the client
side, while inheritance allows you to reuse code on the implementation side. In other words,

1

inheritance is an implementation technique for subclassing that lets us reuse code. In Java,
the way to define subclasses is to extend from a superclass using the extends keyword, and
this extension not only defines a subclass, but also allows inheritance from the superclass.
There is no nice way to just say “subclass” without allowing the possibility of inheriting in
Java.

Why is this the problem? Because multiple inheritance—inheriting from multiple super-
classes, is ambiguous. Consider the following classes A, B, C, D, defined in some hypothetical
extension of Java with multiple inheritance. (I’ve elided the constructors of the classes,
because I really care about the foo method anyways.)

class A {

public int foo () { return 1; }

}

class B extends A { }

class C extends A {

public int foo () { return 2; }

}

class D extends B,C { }

Class B inherits method foo from A, while C overwrites A’s foo method with its own. Now,
suppose we have d an object of class D, and suppose that we invoke d.foo(). What do we
get as a result. Because D does not define foo, we must look for it in its superclasses from
which it inherits. But it inherits one foo method returning 1 from B, and one foo method
returning 2 from C. Which one do we pick? There must be a way to choose one or the other.
This is called the diamond problem (because the hierachy above looks like a diamond—well,
a rhombus, which is a diamond if you squint real hard.) Different languages that support
multiple inheritance have made different choices. The most natural is to simply look in the
classes in the order in which they occur in the extends declaration. But that’s a bit fragile,
since a small change (flipping the order of superclasses) can make a big difference, and the
small change can be hard to track down. There is also the problem of whether we look up
in the hierarchy before looking right in the hierarchy. (We did not find foo in B; do we look
for it in A before looking for it in C, or the other way around?) The point is, it becomes
complicated very fast.

Java and many other languages take a different approach: forbid multiple inheritance alto-
gether. You cannot inherit from more than one superclass. No problem with determining
where to look for methods, then, if they are not in the current class—look in the (unique)
superclass.

Because of this, the extends keyword in Java, which captures inheritance, can only be used
to subclass a single superclass. If you want to subclass other classes as well, those have

2

to be interfaces. Interfaces are not a problem for inheritance, because they do not allow
inheritance: interface contain no code, so there is no code to inherit.

Therefore, when you have a non-tree hierarchy, you need to first identify which subclassing
relations between the class you want to rely on inheritance. This choice will force other
classes to be interfaces. Consider the hierarchy for stacks and measurable stacks, then. We
argued above that we wanted EmptyMStack to subclass and also inherit from EmptyStack,
and for PushMStack to subclass and also inherit from EmptyMStack. These are represented
in the diagram below using +:

Stack

/ | \

/ | \

EmptyStack | PushStack

+ | +

+ MStack +

+ / \ +

+ / \ +

EmptyMStack PushMStack

This means, in particular, that MStack must be an interface. Because an interface cannot
(in Java) subclass an actual class, but can only subclass another interface. This means that
Stack also needs to be an interface. Not a problem, except for the fact that Stack and
MStack, as per the recipe, should contain static methods corresponding to the creators. We
cannot put them in interfaces. So where do they go? The best way to get around the problem
is simply to define two new classes that implement only the creators. Let’s call them StackC

and MStackC. (I have no great suggestion for naming these classes.) Interestingly, if you
think about it, these do not actually need to be in any relation, subclassing or otherwise,
with the other classes. The picture we want, then, given the constraints that Java imposes,
is the following:

Stack [interface]

/ | \ StackC

/ | \

EmptyStack | PushStack

+ | +

+ MStack [interface]

+ / \ + MStackC

+ / \ +

EmptyMStack PushMStack

Let’s implement exactly that.

First, let’s define the interfaces. These are just the signatures, minus the creators.

3

� �
public interface Stack {

public boolean isEmpty ();

public Integer top ();

public Stack pop ();

public String toString ();

}� �
� �
public interface MStack extends Stack {

public boolean isEmpty ();

public Integer top ();

public MStack pop ();

public String toString ();

public int length ();

}� �
Then, the implementation of stacks, following a modified version of the recipe. (Exercise:
can you make precise the modified recipe I am using here?):� �
public abstract class StackC {

public static Stack empty () {

return new EmptyStack ();

}

public static Stack push (Stack s, Integer i) {

return new PushStack (s,i);

}

}

// concrete class for empty stacks

class EmptyStack implements Stack {

public EmptyStack () { }

public boolean isEmpty () { return true; }

public Integer top () {

throw new IllegalArgumentException ("EmptyStack.top()");

}

4

public Stack pop () {

throw new IllegalArgumentException ("EmptyStack.pop()");

}

public String toString () {

return "<bottom of stack>";

}

}

// concrete class for nonempty stacks

class PushStack implements Stack {

private Integer topVal;

private Stack rest;

public PushStack (Stack s, Integer v) {

topVal = v;

rest = s;

}

public boolean isEmpty () { return false; }

public Integer top () { return this.topVal; }

public Stack pop () { return this.rest; }

public String toString () { return this.top() + " " + this.pop(); }

}� �
Finally, the implementation of measurable stacks, following the modified recipe, and inher-
iting from the corresponding concrete classes in the stack implementation:� �
public abstract class MStackC {

public static MStack empty () {

return new EmptyMStack ();

}

public static MStack push (MStack s, Integer i) {

return new PushMStack (s,i);

5

}

}

// concrete class for empty stacks

class EmptyMStack extends EmptyStack implements MStack {

public EmptyMStack () { }

public int length () { return 0; }

public MStack pop () { return (MStack) super.pop(); }

}

// concrete class for nonempty stacks

class PushMStack extends PushStack implements MStack {

private int itemsCount;

public PushMStack (MStack s, Integer v) {

super(s,v);

itemsCount = s.length() + 1;

}

public int length () { return itemsCount; }

public MStack pop () { return (MStack) super.pop(); }

}� �

6

