Object-Oriented Design Lecture 14
CSU 370 Fall 2008 (Pucella) Tuesday, Nov 4, 2008

Code Reuse: Inheritance

Recall the Point ADT we talked about in Lecture &: The Point ADT:

public static Point make (int, int);
public int xPos Q);
public int yPos Q;

X

y

Point.nake(x,y) .xPos()
Point.nake(x,y) .yPos()

and its subclass, the CPoint ADT:

public static CPoint make (int, int, Color);
public int xPos ();

public int yPos Q);

public Color color ();

CPoint.nake(x,y,c) .xPos() = x
CPoint.nake(x,y,c) .yPos() =y
CPoint.make(x,y,c).color() = c

From Lecture 8, we know that we can implement two classes defining the ADTs, and use
extends to indicate to Java that there is subclassing going on.

However, if you remember how we did it back then, there was a lot of code redundancy
between our Point and CPoint classes. Much of what CPoint did is the same thing that
Point did. In fact, much of the code in CPoint I just copy-pasted from the Point class.
That can be considered bad style. First, it is error-prone: suppose we find a bug in the
Point class implementation, and correct it; it is quite easy to forget that we should also
reflect the fix in the CPoint class.

So Java makes a code reuse technique available to you: inheritance. Inheritance lets you
reuse implementation code. (Contrast to subclassing, which lets you reuse client code.) It is
not subclassing, but it is related. Unfortunately, Java conflates the two, which will force us
to jump through hoops at times.

Inheritance is incredibly powerful, and like any powerful tool, its power must be wielded
wisely. Inheritance basically lets us only write the “new” stuff when defining a subclass.



Everything else comes from the definition of the superclass. Here is an alternate definition
of the CPoint class using inheritance:

public class CPoint extends Point {
private Color col;

private CPoint (int x, int y, Color c) {
super (x,y) ;
col = c;

3

public static CPoint make (int x, int y, Color c) {
return new CPoint(x,y,c);

}

public Color color () { return this.col; }
}

This is much nicer.

e Note that we have invoked the superclass constructor in CPoint’s constructor using
super (x,y).

e We get to reuse the fields holding the position, and reuse the position selector methods.

Unfortunately, the above code fails miserably to compile.

What’s the problem? The problem is that we have made the constructor Point and the
fields xpos and ypos private in the Point class. By definition, a private method and private
fields are not accessible from outside the class in which they are defined. But the CPoint
class must invoke the Point constructor.

One solution would be to make the constructor public in Point, but that goes against our
philosophy, that everything which is not in the interface should be made private.

To get around this problem, Java introduces a new protection level, midway between private
and public: protected. Roughly, when a method or a field is qualified as protected, then the
method or the fields is not accessible from outside the class, exzcept a subclass of the class.

Therefore, the complete code that works is as follows:

public class Point {
protected int xpos;
protected int ypos;




protected Point (int x, int y) {
Xpos = X;
ypos = y;

}

public static Point make (int x, int y) {
return new Point(x,y);

}

public int xPos () {
return this.xpos;

¥

public int yPos () {
return this.ypos;
+
X

public class CPoint extends Point {
private Color col;

private CPoint (int x, int y, Color c) {
super (x,y) ;
col = c;

}

public static CPoint make (int x, int y, Color c) {
return new CPoint(x,y,c);

}

public Color color () {
return this.col;
}
}

There are some general rules for what is accessible from an inheriting subclass, and what is
not. These are Java-specific, but every OO language will have similar kind of restrictions.
Given an object A of a class T" inheriting from S. The basic idea is that object A has all the
fields and methods of T', as well as all the public and protected fields and methods of S.

e The constructor of T', when constructing A, will invoke the constructor of S, meaning




that the latter has to be protected or public. This invocation can be explicit by using
the syntax super(argy, .. .,arg;); as the first line in the constructor body in 7'. If no
such call is made, then the constructor of S is invoked automatically by the compiler,
with no arguments. (Meaning that S must implement a protected or public constructor
taking no arguments for this to compile.)

e Remember dynamic dispatch: Every time you invoke a method m on A, the method
code is looked up in the definition of 7', the actual class from which object A was
created. If there is no definition of m in 7', then method m is looked for in S, and it is
found only if it is protected or public. It is important that the first definition found is
executed. This lets you overwrite a definition of a method in a subclass. (This is what
happens for the canonical methods; the defaults are defined in class Object, but you
are welcome to overwrite them.) The overwriting defintion can invoke the superclass’s
method by invoking super.method(...).

e Fields are more complicated. An object of class T' can refer to a field defined in S, as
long as that field is protected or public. Field shadowing—defining a field in a subclass
that is also defined in the superclass—is the field-equivalent of method overwriting,
except that the rules are much more painful to remember. Don’t shadow fields unless
you know what you are doing.!

There are some subtleties with how inheritance works in general, and in Java in particular.
We already saw the issues with method and field access, requiring the need for a protected
qualifier, and the difficulty with field shadowing.

For another subtlety, let’s build up another example. Recall the stack signature we had in
Lecture 11. Consider the dirty implementation we had before we learned about the recipe.

public class Stack {
private int topVal;
private Stack rest;

protected Stack (Stack s, int i) {
topVal = i;
rest = s;

public static emptyStack () {
return new Stack(null, null);

3

public static push (Stack s, int i) {

!See http://articles.techrepublic.com.com/5100-22_11-5031837.html, for instance.




return new Stack(s,i);

¥

public boolean isEmpty () { return (this.topVal==null); }

public int top O {
if (this.isEmpty ())
throw new RuntimeException ("top of empty stack");
return this.topVal;

}

public Stack pop () {
if (this.isEmpty ())
throw new RuntimeException ("pop of empty stack");
return this.rest;

b
}

Let’s extend the Stack ADT. Suppose we really cared about keeping track of length of stacks
in some application. A measurable stack has the following interface, an extension of the

Stack ADT.

public
public
public
public
public
public

MStack.
MStack.
MStack.
MStack.
MStack.
MStack.

static MStack emptyStack ();
static MStack push (MStack, int);
boolean isEmpty Q;

int top O;

MStack pop QO;

int length ();

push(s,i).top() = i

push(s,i) .pop() = s
push(s,i).isEmpty() = false
emptyStack() .isEmpty() = true
emptyStack() .length() = 0
push(s,i).length() = 1 + s.length()

The naive implementation of a length method by simply counting how many elements are
in the stack can be inefficient if the stack is large. There is no way to make the “count how
many elements are in the stack” algorithm more efficient, but there is a way to implement

measurable

stacks to make the length method more efficient: keep a count of the current

stack size alongside the stack content, and simply increment the count upon a push. The
length method now simply returns the current stack size, a constant-time field lookup




operation. This is an example of an augmented data structure, a data structure augmented
with information that make some operations more efficient.

It makes sense to want to implement measurable stacks, which clearly should be a subclass
of stacks, by inheriting from stacks:

public class MStack extends Stack {
private int count;

private MStack (MStack s, int i, int c¢) {
super(i,s);
count = c;

3

public static MStack emptyStack () {
return new MStack(null,null,0);
}

public static MStack push (MStack s, int i) {
return new MStack(s,i,1+s.length());

}

public int length () { return this.count; }

public MStack pop () { return (MStack) super.pop(); }
}

It all goes as expected, except for the pop method. That method does nothing special in
the MStack class—all the action is in the Stack class. But the types are not right. The pop
method should return an MStack. But we know by construction that what gets stored in
the rest field when constructing an MStack is a measurable stack (although the field it is
stored in has type Stack), so we need to re-implement the pop method in MStack to simply
“correct” the type of the returned value.

This is a limitation of Java, and a subtlety to be aware of, that it requires you to jump
through such hoops when inheriting from classes that have a method returning an object of
the class itself.

Question: how would you go about using inheritance to implement MStack when Stack is
implemented using the recipe?




