
Object-Oriented Design Lecture 10
CSU 370 Fall 2008 (Pucella) Tuesday, Oct 14, 2008

Design Pattern: Functional Iterators

There are two main ways, in practice, in which interfaces are used in Java programming:

(1) To capture functionality orthogonal to the natural class hierarchy; and

(2) To define a class for which there is no natural default implementation.

Last time, we saw an example of (1); the notion of a salaried person was somewhat orthogonal
to the natural hierarchy of people in a university setting. (In other words, it kind of cuts
across the hierarchy.)

What about item (2) above, classes for which there is no default implementation?

Again, let’s look at an example. First, some terminology. An aggregate is a data type that
contains objects, such as a list data type, or a tree data type, or a hash table data type, or a
stack data type. Arrays are typical aggregates. Arrays have the added advantage that there
is nice built-in syntax for them, including easy ways of iterating over all the elements of an
array using a for loop.

This idea of iteration can be generalized to all aggregates. An iterator is an object whose
sole purpose is to make it easy to iterate over all the elements of an aggregate.

What’s an iterator? A (functional) iterator is an object that implements the following
interface:� �

public interface FuncIterator {

public boolean hasElement ();

public int current ();

public FuncIterator advance ();

}� �
Functional is often used as a synonym for immutable. A functional iterator provides a method
hasElement() for asking whether we are done iterating over the elements of the underlying
aggregate, a method current() for getting the current element of the aggregate we have not
looked at yet, and a method advance() that advances the iterator past the current element
so that we can look at the element after than. The advance method returns a new iterator

1



that can be queried for that next element.1 The point here is that different aggregates will
require quite different iterators—there is no notion of a default implementation of an iterator
that works for all aggregates. Thus, we use an interface instead of a class above.

Stacks are aggregate, so let’s define an iterator for stacks. The first thing we need to do
is add a method to the Stack class that gives us a functional iterator to iterator over the
implicit stack argument. That iterator creates a new instance of a stack iterator, which is a
class that we define nested inside the Stack class. (It does not need to be nested inside, but
since we only ever create instances of it from within the class, we might as well in order not
to pollute the namespace.)

There are many ways of implementing iterators. Let’s pick a fairly simple minded one that
we will improve next time. Roughly, we create an iterator by passing it an array containing
all the objects to iterate over.

Diversion: arrays

An array is a data structure that allows constant-time access to the elements in
the array. Arrays have a fixed size.

An array of values of type T has type T[]. Any type T can be used. A new
array of size 10, containing values of type T[] is created using new T[10]. If a

is an array of size n, the elements of the arrays can be accessed using a[0], . . . ,
a[n-1]. (Note that indexing starts with 0.)

Initially, an array is created with all elements initialized to either 0 (in case of
integer or float arrays), false (in case of Boolean arrays), or null (in case of
object arrays). To specify an initialized array, one can use special syntax such
as:

int[] a = {0,1,1,2,3,5,8,13}

This creates an array of size 8, initialized with the supplied values.

Arrays are in some sense objects, and they do have fields. A useful field is length,
which returns the length of the array. Thus, in the above example, a.length
evaluates to 8.

A useful operation on arrays is iterating over all the elements of the array. A
for loop can be used for that. There are two flavors of for loops that can be
used. The first is C-like. Suppose that sa is a String array, initialized with some
strings, and suppose that we wanted to print out all the strings in the array, one
per line.

1Java comes with an iterator interface in its basic API that is mutable; it does not have an advance()
method, and query for the current element in the interface mutates the iterator under the hood so that
querying it for the next element returns yet a new element. This mutability, as usual, makes it somewhat
more difficult to reason about iteration (but also sometimes more efficient—the usual tradeoff). We will
come back to mutable iterators later.

2



for (int i = 0; i<sa.length; i++)

System.out.println sa[i];

The for loop specifies three things: a declaration for the variable that will hold
the current index when iterating through the array, along with an initial value
(here, int i = 0), a test for when to continue iterating (here, we continue iter-
ating as long as as i < sa.length, that is, as long as the index has not reached
the end of the array), and how to update the index at the end of every iteration
(here, we increment the index by one, i++).

A cleaner way to express this for loop, one that does not require us to worry
about indices into the array (which always opens the door to either going past
the end of the array, or stopping short before the array ends) is to use the second
form, called a for-each loop:

for (String s : sa)

System.out.println s;

The idea is that variable s, of type String, repeatedly gets bound to each element
of array sa in turn.

We create such an array in the getFuncIterator() method that will create the iterator
instance. Let’s hack on the Stack class, adding to it a (private) length() method.� �

public class Stack {

... // same code as before

private int length () {

if (this.isEmpty())

return 0;

else

return (1 + this.pop().length());

}

public FuncIterator getFuncIterator () {

int[] content = new int[this.length()];

Stack current = this;

for (int i = 0; i < content.length; i++) {

content[i] = current.top();

current = current.pop();

}

return new StackFuncIterator (content,0);

}

3



private static class StackFuncIterator implements FuncIterator {

private int[] content;

private int index;

// constructor takes the array of content and the initial index

public StackFuncIterator (int[] c, int i) {

content = c;

index = i;

}

public boolean hasElement () {

return (this.index < content.length);

}

public int current () {

if (this.hasElement())

return content[this.index];

throw new java.util.NoSuchElementException ("Stack iterator empty");

}

public FuncIterator advance () {

if (this.hasElement())

return new StackFuncIterator (content,index+1);

throw new java.util.NoSuchElementException ("Stack iterator empty");

}

}

}� �
The exception thrown when trying to get at the current element when there is no such
element, or advancing the iterator passed the end of the stack is the one that the Java API
requires its iterator to throw, so I have done so here for consistency.

Here is a method to compute the sum of an integer stack.� �
public static int computeStackSum (Stack arg) {

FuncIterator i;

int total=0;

for (i = arg.getFuncIterator(); i.hasElement(); i=i.advance())

total=total+i.current();

return total;

}� �
4



Of course, it is possible to abstract away from this and give a method to simply compute
the sum over any structure with an iterator.� �

public static int computeIterSum (FuncIterator arg) {

FuncIterator i;

int total=0;

for (i=arg; i.hasElement(); i=i.advance())

total=total+i.current();

return total;

}� �
What if we wanted to iterate the other way, that is, iterate over a stack in the bottom-to-top
direction. If we use the array-mediated iterator of last time, the change is almost trivial.
Instead of filling in the array from the left, we fill it in from the right:� �

public FuncIterator getFuncIterator () {

int[] content = new int[this.length()];

Stack current = this;

for (int i = content.length-1; i >=0 ; i--) {

content[i] = current.top();

current = current.pop();

}

return new StackFuncIterator (content,0);

}� �
Everything else is the same. That’s nice.

The stack iterator we implemented above is somewhat inefficient. It basically traversed the
structure twice. Once to construct the initial array, and the second time when actually
iterating over the array. There are times when this is the best we can do easily.

Question for next time: how can you do it more efficiently?

5


