
Object-Oriented Design Lecture 4
CSU 370 Fall 2008 (Pucella) Tuesday, Sep 23, 2008

Equality for Abstract Data Types

Every language has mechanisms for comparing values for equality, but it is often not the
kind of equality you want. In Java, for instance, the built-in operator == is used to check
for equality. Now, for primitive types, == behaves like you would expect, that is, 1==1 and
!(1==2), where ! is negation. Similarly, true==true, but !(true==false).

But what happens with objects? obj1==obj2 returns true exactly when two objects are the
same actual object. In other words, == compares object identity.

For example,

Drawing obj1 = Drawing.empty();

Drawing obj2 = obj;

obj1 == obj2 ---> true

But:

Drawing obj1 = Drawing.empty();

Drawing obj2 = Drawing.empty();

obj1 == obj2 ---> false!

Although obj1 and obj2 “look the same”, they are different objects. (Each invocation of
Drawing.empty() invokes new, which creates a different object every time.)

Object identity is useful, but it is rarely what we want. In particular, I may want to say
that two drawings are equal if they contain the same sequence of lines. (This is a little bit
like in set theory, where two sets are considered equal if they have the same elements, or
considering two lists equals if they have the same elements in the same order.) This goes
back to the principle of indistinguishability, which can be paraphrased here as: if two objects
behave the same (i.e., yield the same observations) no matter the situation, then they should
be considered equal. Note that the observations we can make on drawings rely on the lines
in a drawing being ordered.

For all the ADTs we are going to design, we are going to have an equality operation, capturing
whatever notion of equality we deem reasonable and useful for values of the ADT, following
the principle of indistinguishability. We are going to call the operation equals(), partly
because that’s a reasonable name, and partly because that’s a name that Java knows about.

1

Java has a certain number of methods (called canonical methods) that it requires every class
to implement. In fact, if you don’t implement explicitly one of those canonical methods, the
system assumes a default implenentation. One of those methods is the equals() method.1

The signature of the equality operation will be as follows:� �
ACCESSORS boolean equals (Object);� �

Again, this is just convenient because it is the shape that Java expects the equals() method
to have. (Were we to implement ADTs for other languages, we could be more flexible.) First,
let’s worry about the Object argument type. We’ll come back to it later, but for the time
being, just think of it as a way to indicate that equals can take any kind of argument as
input.

What we need next is a specification for equals. Of course, this depends on the ADT we
have. So what would be the specification of equals for drawings? As we said above, we
want to consider two drawings equal when they have the same lines in them, in the same
order. Comparing a drawing with something that is not a drawing should give us false. So
let’s write the specification that gives us that. If we follow the recipe outlined a couple of
lectures ago, we need to say how equals interacts with all the creators.� �

empty().equals(obj)

= true if obj is a drawing && obj.isEmpty()=true

= false otherwise

oneLine(l).equals(obj)

= true if obj is a drawing && obj.restLines().isEmpty() = true

&& obj.firstLine().equals(l)

= false otherwise

merge(d1,d2).equals(obj)

= true if obj is a drawing

&& (d1.isEmpty()=d2.isEmpty()=obj.isEmpty()=true

|| (d1.isEmpty()=true and d2.equals(obj))

|| (d1.firstLine().equals(obj.firstLine()) = true

&& merge(d1.restLines(),d2).

equals(obj.restLines()) = true))

= false otherwise� �
(I am using Java’s && for AND and || for OR. I also assume that the Line ADT has an
equals() operation that checks when two lines are equal.) A bit of a mess, but it works.

1By default, Java takes the equals method to just check for object equality, ==, again, generally not
what we want.

2

Actually, it turns out that we can simplify the above, and replace these three equations by
a single equation. I don’t recommend you necessarily do that at the beginning, at least not
until you understand what is going on well. But convince yourself that you can replace the
above three equations by the following simpler equation:� �

// alternative algebraic specification for equals

d.equals(obj)

= true if d is a drawing

and (d.isEmpty()=obj.isEmpty()=true

or (d.firstLine().equals(obj.firstLine())=true

&& d.restLines().equals(obj.restLines())=true))

= false otherwise� �
This specification is much easier to implement. In fact, it already is an implementation. To
implement it in Java, we first need to know how to check whether an object is a drawing.
We can do it using Java’s instanceof operator, which checks if an object is an instance of
some class. Here is an implementation of equals for Drawing, more verbose than it may
need to be, but at least it’s clear:� �

public boolean equals (Object obj) {

Drawing drawing;

if (obj instanceof Drawing) { // is obj a drawing?

drawing = (Drawing) obj; // cast to a Drawing

if (this.isEmpty() && drawing.isEmpty())

return true;

else

return (this.firstLine().equals(drawing.firstLine()) &&

this.restLines().equals(drawing.restLines()));

}

return false;

}� �
Now, in order for equals() to truly behave like an equality, it has to satisfy the main
properties of equality. What are the characteristics of equality?

• Reflexivity: obj1.equals(obj1)=true

• Symmetry: if obj1.equals(obj2)=true, then obj2.equals(obj1)=true

• Transitivity: if obj1.equals(obj2)=true and obj2.equals(obj3)=true, then
obj1.equals(obj3)=true

3

These are the three properties that equals() must satisfy in order for it to behave like a
“good” equality method. An additional property follows from the above properties that is
worth mentioning explicitly:

• obj.equals(null) is always false

Now, Java does not enforce any of those properties! It would be cool if it did, and in
fact, it can be considered a nontrivial research project to figure out how to get the system to
analyze your code to make sure the above is true. (Because, after all, note that you can write
absolutely anything in the equals() method... so you need to be able to check properties
of some arbitrary code — in fact, you can prove it is impossible to get, say, Eclipse, or any
compiler to tell you the answer. Stick around for theory of computation to see why that is.)

It is an implicit behavioral specification that equals() satisfies the three properties above.

Hash Codes [Not Covered in Class]

Going hand in hand with the equals method in Java (this is Java specific...), is the canonical
method hashCode(). Let me make a little detour here. Intuitively, the hash code of an object
is an integer representation of the object, that serves to identify it. The fact that an hash
code is an integer makes it useful for data structures such as hash tables.

Suppose you wanted to implement a data structure to represents sets of objects. The main
operations you want to perform on sets is adding and removing objects from the set, and
checking whether an object is in the set. The naive approach is to use a list, but of course,
checking membership in a list is proportional to the size of the list, making the operation
expensive when sets become large. A more efficient implement is to use a hash table. A hash
table is just an array of some size n, and each cell in the array is a list of objects. To insert
an object in the hash table, you convert the object into an integer (this is what the hash
code is used for), convert that integer into an integer i between 0 and n− 1 using modular
arithmetic (e.g., if n = 100, then 23440 is 40 (mod 100)) and use i as an index into the array.
You attach the object at the beginning of the list at position i. To check for membership of
an object, you again compute the hash code of the object, turn it into an integer i between
0 and n − 1 using modular arithmetic, and look for the object in the list at index i. The
hope is that the lists in each cell of the array are much shorter than an overall list of objects
would be.

In order for the above to work, of course, we need some restrictions on what makes a good
hash code. In particular, let’s look again at hash tables. Generally, we will look for the
object in the set using the object’s equals() method — after all, we generally are interested
in an object that is indistinguishable in the set, not for that exact same object.

This means that two equal objects must have the same hash code, to ensure that two equal
objects end up in the same cell.2 Thus, two equal objects must have the same hash code.

2Try to think in the above example of a hash table what would happen if two equal objects have hash

4

Formally:

• For all objects obj1 and obj2, if obj1.equals(obj2) then
obj1.hashCode() = obj2.hashCode().

Generally, hash codes are computed from data local to the object (for instance, the value of
its fields). Another property of the hashCode that is a little bit more difficult to formalize is
that the returned hash codes should “spread out” somehow; given two unequal objects of the
same class, their hash codes should be “different enough”. To see why we want something like
that, suppose an extreme case, that hashCode() returns always value 0. (Convince yourself
that this is okay, that is, it satisfies the property given in the bullet above!) What happens
in the hash table example above? Similarly, suppose that hashCode() always returns either
0 or 1. What happens then?

We will see more uses of hash codes when we look at the Java Collections framework later
in the course.

Java Programs [Not Covered in Class]

Let’s write a program testing a little bit our implementation of the Drawing class. This will
lead to an actual discussion on testing soon, but for the time being, this is just a way to
re-introduce the basics of coming up with an actual Java program.

To test Drawing, I need a nice way to print out a representation of a drawing. So let’s add
an operation to the signature of the Drawing ADT that lets us get a string representation of
a drawing for printing and debugging purposes. (We need to add it to the signature because
we want the function to be available, and I told you that only operations in the signature
should be available.)

So here is the signature, and the specification that you should add to the interface.� �
public String toString ();

empty().toString() = ""

oneLine(l).toString() = l.toString()

merge(d1,d2).toString() = d1.toString() + " " + d2.toString()� �
This specification assumes that lines have a toString operation as well.

It is straightforward to transform this specification into a method to add to the Drawing

class.

codes that end up being different mod n.

5

� �
// Canonical method to print lines in a drawing

public String toString () {

if (this.isEmpty())

return "";

return (this.firstLine().toString() + " "

+ this.restLines().toString());

}� �
Again, the name toString I used for this method is not random. It is a canonical method
that Java understands implicitly. Here’s how toString() is special: whenever you use an
object in a context where Java expects a string—for example, invoking System.out.println

which expects a string and prints it out on the console—then Java will invoke the toString

method of that object if it is defined instead of giving you back a type error.3

With this in mind, we can now write a small testing program. Of course, we need an
implementation for lines. Here is something simple that gets us off the ground, in a file
Line.java. We can do nothing with lines except create them and print out their name.� �

// A placeholder implementation of a line

class Line {

// The name of the line

private String name;

// Private constructor, taking the name of the line as argument

private Line (String s) {

this.name = s;

}

// Creator for a line, taking the name as an argument

public static Line named (String s) {

Line obj = new Line(s);

return obj;

}

// Canonical method for printing name of a line

public String toString () {

3Because it is a canonical method, there is a default implementation for toString(), something like
“build a unique name from the name of the class and a hash code of the object” e.g. Drawing@a1234. Not
the most informative.

6

return this.name;

}

}� �
With this, we can write a very simple-minded tester in DrawingTester.java:� �

// Simple-minded tester for the Drawing class

class DrawingTester {

// The main testing function

static public void main (String[] args) {

Line l1 = Line.named("L1");

Line l2 = Line.named("L2");

Line l3 = Line.named("L3");

Line l4 = Line.named("L4");

Drawing d1 = Drawing.merge(Drawing.oneLine(l1),

Drawing.oneLine(l2));

Drawing d2 = Drawing.merge(d1,Drawing.oneLine(l3));

System.out.println("drawing = " + d2);

System.out.println("restLines(drawing) = " + d2.restLines());

}

}� �
Can you spot where I made us of the implicit invokation of the toString canonical functions?

Compiling and running this code gives us the expected result:� �
> javac DrawingTester.java

> java DrawingTester

drawing = L1 L2 L3

restLines(drawing) = L2 L3� �
As I said, this is very simple-minded testing. Just running a test or two to make sure we can
create simple drawings. In a few lectures, we will be considering testing much more carefully.

7

