
Logic and Computation Lecture 17
CSU 290 Spring 2009 (Pucella) Wednesday, Feb 25, 2009

Induction

A few weeks ago, we saw that (app NIL y) was always a true list, at least when y was
itself a true list. In other words, we could prove, quite easily, that (true-listp y) =⇒
(true-listp (app NIL y)).

What about (app x NIL), is that always a true list? By inspect and informally thinking
about it, you should be able to convince yourself that (true-listp (app x NIL)) is valid,
that is, true for all choices of x. But can we prove it using what we’ve seen until now?

Suppose we wanted to prove (true-listp (app x NIL)). How would we go about it? Un-
fortunately, we don’t know anything about x, so expanding app or every true-listp does
not lead to anything we can really simplify. The one thing we learned that may be useful
here is case analysis; we could do a case analysis on whether (endp x) is true or not.

We end up with the following two formulas to prove: (endp x) =⇒ (true-listp (app x NIL))

and ¬(endp x) =⇒ (true-listp (app x NIL)). The first one is easy to prove (I’m not
even going to bother isolating the context):

(endp x) =⇒ (true-listp (app x NIL))

by definition of app, (endp x), and if axiom

(endp x) =⇒ (true-listp NIL)

by definition of true-listp

(endp x) =⇒ (if (endp NIL) (= NIL NIL) (true-listp (cdr NIL)))

by endp axiom

(endp x) =⇒ (= NIL NIL)

by reflexivity of = and propositional reasoning

Easy. The second one is more interesting:

¬(endp x) =⇒ (true-listp (app x NIL))

by definition of app, assumption, and if axiom

¬(endp x) =⇒ (true-listp (cons (car x) (app (cdr x) NIL)))

by definition of true-listp

1



¬(endp x) =⇒ (if (endp (cons (car x) (app (cdr x) NIL)))

(= (cons (car x) (app (cdr x) NIL)) NIL)

(true-listp (cdr (cons (car x) (app (cdr x) NIL)))))

by endp axiom, if axiom, and cdr axiom

¬(endp x) =⇒ (true-listp (app (cdr x) NIL))

We’re kind of stuck here, since we don’t know anything about (cdr x). No problem, you
say—let’s do the same thing we did at the beginning. Let’s do a case analysis on whether
(endp (cdr x)) is true or not. Try it. You’ll see that you can probe the first case easily,
and the second case will have you end up trying to establish that (true-listp (app (cdr

(cdr x)) NIL)).

Do you notice a pattern here? The proof by case analysis ends up looking very much like
trying to unwind the recursion! Now, and this is where termination comes in to help us,
because app is admissible, we know that it terminates on all inputs, meaning, in particular
that we know that this unwinding will eventually stop and we’ll hit the base case where endp
is true. But, and this is a bit of a problem, we cannot tell how deep we can go—after all,
that depends on x, and we know nothing about x.

To help us here, we need a new proof rule, that resembles case analysis, but says something
more. That proof rule is the induction rule (here, for true lists). Here is what it looks like:

Induction Rule (for true lists): If F is a formula, x a variable in F whose
intended domain is true lists, and σ is a substitution that, among others, sends
variable x to (cdr x), then we can rewrite a formula F into

(endp x) =⇒ F ∧ (¬(endp x) ∧ F/σ) =⇒ F

where F/σ is instance of formula F obtained by performing the substitution σ.

The two formulas (endp x) =⇒ F and (¬(endp x)∧ F/σ) =⇒ F are sometimes called the
proof obligations of the induction.

Thus, for instance, consider the formula (true-listp (app x NIL)).

Theorem 1. (true-listp (app x NIL))

Proof. The induction rule (on variable x) gives us the following proof obligations:

(endp x) =⇒ (true-listp (app x NIL))

and

¬(endp x) ∧ (true-listp (app (cdr x) NIL))

=⇒ (true-listp (app x NIL)).

2



We already prove the first one above, and the second one is not that much harder now.

To prove it, let C = ¬(endp x)∧(true-listp (app (cdr x) NIL)) be the context, where
A1 is ¬(endp x) and A2 is (true-listp (app (cdr x) NIL)):

C =⇒ (true-listp (app x NIL))

by definition of app, A1, and if axiom

C =⇒ (true-listp (cons (car x) (app (cdr x) NIL)))

by definition of true-listp, endp axiom, if axiom

C =⇒ (true-listp (cdr (cons (car x) (app (cdr x) NIL))))

by cdr axiom

C =⇒ (true-listp (app (cdr x) NIL))

by A2

ut

Intuitively, this is what the induction rule for true lists says: in order to prove a formula F
where a variable x of the formula ranges over true lists, it suffices to prove F in the case
where x is an endp, to prove F in the case where x is not an endp, and where additionally
we know that formula F holds for the rest of x.

(This is actually very similar to the argument that you use to come up with a recursive
function. Remember why recursion works, for true lists: you write a recursive function by
giving a base case in which the function immediately returns a result, and then you write
the recursive case assuming that your function works correctly for the cdr of the input. This
works when the functions terminates. The exact same thing happens for induction: to prove
F , we prove that it is true for the base case of the input, and then we prove it is true for
the inductive case of the input, where we assume that the formula is true for the cdr of the
input. Recursion and induction go hand in hand, as we’ll see in more detail in the next few
weeks.)

The main difficulty, when applying the induction rule, is to determine which variable to do
induction on. In fact, that induction goes hand in hand with recursion is the key here: to be
useful, induction should be over a variable that controls the recursion in one of the function
in the formula. For instance, consider the following theorem.

Theorem 2. (= (rev (app y z)) (app (rev z) (rev y)))

Proof. To prove this, we pretty much have to use induction because no theorem applies
here, and we don’t know anything about either y or z. But induction on what? Looking at
the first app, we see that y is the variable driving the recursion, meaning that y is a good

3



candidate to do induction on. Here are the proof obligations you get for that application of
the induction rule:

(endp y) =⇒ (= (rev (app y z)) (app (rev z) (rev y)))

and

¬(endp y) ∧ ((= (rev (app (cdr y) z)) (app (rev z) (rev (cdr y)))))

=⇒ (= (rev (app y z)) (app (rev z) (rev y))).

Ans the proof of those proof obligations you had to come up with for the midterm. ut

Finally, a more complicated formula is associativity of app.

Theorem 3. (= (app a (app b c)) (app (app a b) c))

Proof. Again, induction, because no theorem really applies and we don’t know anything
about a, b, or c. So which variable do we do induction on? a is the only variable that
appears on both sides of the = in a position where it controls the recursion, so it seems like
a good candidate. The proof obligations we get are:

(endp a) =⇒ (= (app a (app b c)) (app (app a b) c))

and

¬(endp a) ∧ (= (app (cdr a) (app b c)) (app (app (cdr a) b) c))

=⇒ (= (app a (app b c)) (app (app a b) c))

and we already proved those before—Theorems 2 and 3 in Lecture 14. ut

Note that we have applied induction to formulas of the form exp only, including (= exp

exp’). What about implications, though? For next lecture, consider the proof obligations
you get for the formula (true-listp x) =⇒ (= (app x NIL) x), and see whether you can
“massage” them into a form in which we can prove them.

Aside: Justifying Induction

One question you may have is why the induction rule actually makes sense. It looks a
bit like magic. We get to assume stuff about what we want to prove. Compare to case
analysis: I justified the “case analysis” step in a proof by showing that it corresponds to
a four steps of propositional reasoning—in other words, we have case analysis as soon as
we have propositional reasoning, it’s just not obvious. Case analysis doesn’t require any
new idea. Induction, however, cannot be justified by showing that it’s just propositional

4



reasoning in disguise. There is genuinely something new there. So how can we justify it is a
good rule?

The proof is in the pudding. Recall that the main reason why we want to prove theorems is
because a proof of F tells us that F is valid, and validity is what we really care about, since
validity tells us something about how a formula behaves when we plug in real values.

So, our induction rule says that to prove F by induction, it suffices to prove the proof
obligations obtained form the induction rule. Thus, to justify the induction rule, we need
to argue that if indeed we prove the proof obligations (i.e., the proofs obligations are valid),
then the original formula F is also valid.

Let’s argue this for a specific example. (The general case is similar, just more cumbersome
to write down.) Consider (true-listp (app x NIL)), the formula we started with.

I claim that if
(endp x) =⇒ (true-listp (app x NIL))

and

(¬(endp x) ∧ (true-listp (app (cdr x) NIL)) =⇒ (true-listp (app x NIL))

are valid, then (true-listp (app x NIL)) itself is valid.

Here is the argument. First, recall that every ACL2 value is either an atom, or a cons-
structure. Define the size of a value to 0 for an atom, or the length of the spine for a
cons-structure. I want to show that (true-listp (app x NIL)) is valid, that is, it is true
no matter what value we put in for x.

Let A be the set of all values of x that make the formula (true-listp (app x NIL)) false,
that is,

A = {a | (true-listp (app a NIL)) is false}
where a ranges over ACL2 values. Our claim, that (true-listp (app x NIL)) is valid,
corresponds to A being empty. (Why?)

To argue that A must indeed be empty, we go by contradiction, a common technique. We
assume that A is not empty, and show that this leads to something absurb, meaning that that
assumption was wrong, and that A must be empty, that is, (true-listp (app x NIL)) is
valid.

Therefore, assume that A is not empty. Because every value has a size, there is some
value in A with minimal size in A. (There may be more than one, of course.) That is,
there is some value am in A such that no other values in A have a smaller size. Note
that the value am cannot be an atom, because one of our assumptions says (endp x) =⇒
(true-listp (app x NIL)) is valid, which says that every atom makes the formula true,
meaning that no atom is in A. So the value am is not an atom, but it’s a cons-structure, of
some size size(am) ≥ 1.

Okay, so because am is in A, we know that (true-listp (app am NIL)) is false. Using
the definition of app, and the fact that am is not an atom, meaning that (endp am) is

5



false, we get that (true-listp (cons (car am) (app (cdr am) NIL))) is false. Using
the definition of true-listp and simplifying, we get that (true-listp (app (cdr am)

NIL)) is false. Ah, but then look what happens: this says that (cdr am) is a value in A,
right? And moreover, by the way we defined size, we know that the size of (cdr am) is
strictly less than the size of am—so we have an element of A, namely, (cdr am) of size
strictly less than am, but then we expressely chose am in A with the property that no other
value in A had smaller size. This is our contradiction. Thus, our initial assumption, that A
is not empty, was wrong, and A must be empty. That is, (true-listp (app x NIL)) must
be valid.

6


