Logic and Computation
CSU 290 Spring 2009 (Pucella)

Lecture 16

Monday, Feb 23, 2009

First, some practice proof problems. Consider the following definitions:

(defun
(if

(defun
(if

(defun
(if

length (L)
(endp L)
0

(+ 1 (length (cdr L)))))

add1l (L)

(endp L)

NIL

(cons (+ 1 (car L)) (addl (cdr L)))))

same-lengthp (L M)
(endp L)
(endp M)
(if (endp M)
(endp L)
(same-lengthp (cdr L) (cdr M)))))

Prove the following theorems:

(a) (endp x) = (= (length (addl x)) (length x))

(b) (—(endp x) A (= (length (addl (cdr x))) (length (cdr x))))

= (= (length (addl x)) (length x))

(c) (endp x) = (same-lengthp (addl x) x)

(d) (—(endp x) A (same-lengthp (addl (cdr x)) (cdr x))

— (same-lengthp (addl x) x)

Note that (d) is a bit tricky. Not hard. There’s just a particular axiom that you need to use
that is not completely obvious, although I gave it to you way back when.

Termination and the Definitional Principle

Weve already seen that when you define a function, say
(defun f (x) body)

then that yields an axiom
(= (f x) body)

to the theory, that is, the set of all axioms you can work with.
Today, we examine what happens when you define functions more carefully.
Lets see why we have to examine anything at all.

First, let’s see why we harped on termination so much a while back, and consider a function
such as

(defun f (x)
+ 1 (f x)))

This is a nonterminating recursion, clearly. Now consider the corresponding axiom
(= (f x) (+1(x))).

There’s a problem with that axiom. If (= (f x) (+ 1 (f x))) is provable, then we can
derive that (= 0 1) is provable. But by the axioms of arithmetic, we know that —=(= 0 1).
Thus, if we allow (= (f x) (+ 1 (f x))) as an axiom, we can prove both that (= 0 1)
and that =(= 0 1). In other words, we can prove the formula false, or put more shockingly,
that false = true.

So we can prove that false = true. Why is that bad? Well, aside from the fact that it’s
clearly not true, once we’ve proved that, we can prove anything else! Given any formula
F, we know from propositional logic that false = F' is a valid formula. But then, given
that we can prove false, then using Modus Ponens we can get F'. And this is so no matter
what F is. Once we can prove false, we can prove any formula. A logic that lets us prove
false is called unsound, and any axiom that we add to the logic that lets us prove false is an
unsound aziom. Unsound axioms are bad. An unsound logic

So, nonterminating functions like the one above can lead to unsound definitional axioms,
and those are bad.!

But problems do not come only from nontermination—some terminating recursive functions
also can give you definitional axioms that are unsound. Consider:

!Not all nonterminating recursive functions lead to definitional axioms that are unsound. For instance,
(defun £ (x) (f x)) gives the axiom (= (£ x) (£ x)) which is perfectly fine—indeed, it is just an in-
stance of the Leibniz axiom for =.

(defun £ (x) y)

Leading to the axiom (= (f x) y).

This axiom is unsound. Indeed, Note that (= (f x) 0) A (= (f x) 1) is provable using
that axiom (by using two instances of the axioms), and by transitivity of =, we can prove (=
0 1), and as we saw above, this leads to being able to prove false.

What else can go wrong? Redefining functions can also lead to problems. Suppose we define
a function

(defun £ (x) 0)
which leads to the axiom (= (f x) 0). If we later redefine
(defun f (x) 1)

then we get the new axiom (= (f x) 1), and with the old axiom we can derive that (= 0
1) from which, once again, we can prove false.

So how do we avoid introducing unsound axioms? We do so by restricting the definitions we
allow.

Definition. A definition (defun f (z1 ... zn) body) is admissible provided:

(1) f is a new function symbol, i.e., there are no other axioms about it in the current
history;

(2) The zi are distinct variable symbols;?

(3) body is a well-formed term—a legal expression using only functions already defined in
the current history, including f—mentioning no variables freely other than the xi;

(4) the function is terminating.

If a definition (defun f (x1 ... xn) body) is admissible, then the logical effect of the
definition is to add a new axiom to our theory, called the definitional axiom for f:

(= (f x1 ... xn) body).

So how do you check that a function terminates? First, in ACL2, the only thing we have to
worry about is recursion (including, possibly, mutual recursion, that is, two or more functions
that recursively call each other). Non-recursive functions always terminate.

2Why? If the variables are the same, say (defun f (x x) body) then what does (f 1 2) mean anyways?

What about recursive functions? As you saw in 211, a recursive function is guaranteed to
terminate if: (1) it has a base case that terminates immediately, and (2) every recursive call
of the function “makes progress towards the base case”. What this means exactly depends
on the function at hand, or more precisely, on the kind of data that we are recursing over.
In the case of true lists, the base case is often the empty list, and the recursive case, in order
to make progress towards termination, should recursively call the function on a shorter list.
A third point is ACL2 specific, as we saw at the beginning of the course: (3) the function
should terminate no matter what the input is. Happily, if you use the design recipes from
211 adapted to ACL2, as we showed you earlier in the course, then recursive functions always
terminate. That’s one of the purposes of the design recipe: termination is obvious.

If you have functions that do not exactly follow the design recipe, then the argument for
termination can be more subtle. Consider the following ACL2 function:

(defun foo (n)
(cond ((zp n) 0)
((=n 1) 1)
((evenp n) (foo (/ n 2)))
((oddp n) (foo (+ n 1)))))

(Assume that we have correct definitions for evenp and oddp; also, there is no “else” clause
to the cond, because it is easy to check that any input will make one of the conditions true.)
I claim that this terminates for all inputs. Clearly, if the input is not a natural number,
it terminates immediately. (Why?) Otherwise, can we argue that we are making progress
towards the base cases (either 0 or 1)7 For even inputs, the recursive call can easily be
seen to make progress towards the base cases. When the input is odd, even though the
recursive call uses a bigger number (that therefore does not immediately progresses towards
the base case), (foo (+ n 1)) will be called on an even number, which means that at the
following iteration, foo will be invoked on (/ (+ n 1) 2), which is smaller than n. Thus,
even though we are not making progress towards the base case at every step, we are making
progress towards the base case at either every step or every two steps, depending on whether
the input is even or odd. That’s actually sufficient to establish termination. (Why?)

However, this doesn’t work for every function, even those that look similar to the above.
One of the most famous examples is the following so-called Collatz function:

(defun collatz (n)
(cond ((zp n) 0)
(n 1)1
((evenp n) (collatz (/ n 2)))
((oddp n) (collatz (+ (*x 3 n) 1)))))

It is unknown whether this function terminates on all inputs. Plot out a few calls for small
values of n, and you’ll get a sense for how long some of the iterations take. Termination has

4

been checked for all natural numbers up to 1016, but for all we know it fails to terminate
on some input greater than 10'7. We just don’t know enough about number theory to say
anything else.

The fact that there are functions that we have no idea whether they terminate or not suggests
that we do not know how to automatically check for termination. Indeed, it’s worse than
that. Turing showed that it is impossible to write a program that can take any function and
automatically decide (correctly) if it terminates or not. This is a fundamental limitation of
computation as we understand it.

The general argument needs more theory than we have, but I can give you a sense for why that
is by considering the problem in Scheme. Here is the argument that it is impossible to write
a Scheme function that correctly determines whether another Scheme function terminates.
We argue by contradiction.

Suppose that we could write a function (terminates? f x) that returns true when (f x)
terminates, and returns false when (f x) does not terminate. I don’t care how terminates?
is written—just suppose you managed to write it. I will now show that you get something
completely absurd as a result.

In particular, I can now write the following perfectly legal scheme functions:

(define (loop-forever) (loop-forever))

(define (HP x)
(if (terminates? HP x)
(loop-forever)

1)

My question: does (HP 0) terminate or not?

Let’s see. It either terminates or doesn’t. So let’s consider both cases.

e [f (HP 0) terminates, then by assumption (terminates? HP 0) must be true, and
therefore, from the defintion of HP, (HP 0) must loop forever, i.e., not terminate,
contradicting that (HP 0) terminates.

e If (HP 0) does not terminate, then by assumption (terminates? HP 0) must be
false, and therefore by definition of HP, (HP 0) returns 1 immediately, i.e., it terminates,
contradicting that (HP 0) does not terminate.

Because we get a contradiction no matter what, it must be that what we initially assumed
was wrong, i.e., that terminates? works correctly. Because terminates? was completely
arbitrary, the argument works no matter what the implementation of terminates? is. In
other words, we cannot write a correct terminates? function in Scheme.

It turns out that this argument can be made to work for any programming language and
even across programming languages, but you’ll have to wait for CSU 390 to see that.

