
Logic and Computation Lecture 15
CSU 290 Spring 2009 (Pucella) Thursday, Feb 19, 2009

In this lecture, we round off some aspects of proving theorems, before moving on to more
advanced proving techniques.

In the last two lectures, we saw some basic techniques (basically rewriting using substitutions
and propositional reasoning) to prove theorems of the form (= exp1 exp2) and theorems of
the form F =⇒ (= exp1 exp2).1

Using Conditional Theorems

Up until now, to help us in our proofs, we have been using theorems and assumptions of the
form (= exp1 exp2), which can be applied directly. However, it is often the case that the
theorems that we want to use are themselves implications, and we need to learn what to do
when that is the case.

Here is an example. Assume that we have

(= (true-listp y) T) =⇒ (= (true-listp (app x y)) T)

for our standard definition of app. That is actually a valid formula (convince yourself of
that!), but we cannot prove that just yet. So let’s just assume it. (We’ll be able to prove
it at the end of the next week, if you’re curious.) Equipped with this assumption, we prove
the following theorem:

(= (true-listp (app-nil x)) T)

where app-nil is defined as follows:

(defun app-nil (x) (app x NIL))

The proof is fairly straightforward, but requires the assumption.

(= (true-listp (app-nil x)) T)

by definition of app-nil

(= (true-listp (app x NIL)) T)

At this point, we would like to use the assumption, which says, if you’ll recall, that (=

(true-listp (app x y)) T) is true when (= (true-listp y) T) is true. In particular,

1It is not too hard to generalize the techniques we saw to theorems of the form exp and F =⇒ exp,
simply by rewriting exp to any value that is not NIL, since any non-NIL value is interpreted as true.
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we want to use the following instance of the assumption: (= (true-listp NIL) T) =⇒
(= (true-listp (app x NIL)) T). If we can establish that (= (true-listp NIL) T) is
true at the point where we want to use it in the proof, then we can get from it that (=

(true-listp (app x NIL)) T) is true, and we are done. And it is easy to check that (=

(true-listp NIL) T) is true, via a very simple proof (do it!). Thus, we can complete the
proof in one step. Here is the complete proof from the beginning.

(= (true-listp (app-nil x)) T)

by definition of app-nil

(= (true-listp (app x NIL)) T)

by assumption (since (= (true-listp NIL) T) is true)

(= T T)

by reflexivity

Actually, as I said above, we can simplify this slightly by dropping the (= .. T) bit, since
any value which is not NIL corresponds to true in the ACL2 logic, so that, for instance, 5 ≡
true. Thus, we can assume simply that (true-listp y) =⇒ (true-listp (app x y)),
and prove (true-listp (app-nil x)) as follows:

(true-listp (app-nil x))

by definition of app-nil

(true-listp (app x NIL))

by assumption (since (true-listp NIL) is true)

We will see slightly more complex examples of using theorems that are implications later.

Proof by Case Analysis

Consider how you would prove that (>= (if x 20 15) 0) is valid. It shouldn’t take too
long to convince yourself that it is. And your reasoning, informally, should be that x here
is either true or false, and either way, the result is greater than 0. The question is, how can
we prove that using the rules we already have?

What we want is case analysis, or proof by cases. Here is the technique, used to prove the
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above:

(>= (if x 20 15) 0)

by case analysis on x

x =⇒ (>= (if x 20 15) 0) ∧ ¬x =⇒ (>= (if x 20 15) 0)

And now we can prove both conjuncts separately, rather quickly:

x =⇒ (>= (if x 20 15) 0)

by assumption x and if axiom

x =⇒ (>= 20 0)

by arithmetic

x =⇒ T

by propositional reasoning

and

¬x =⇒ (>= (if x 20 15) 0)

by assumption ¬x and if axiom

¬x =⇒ (>= 15 0)

by arithmetic

¬x =⇒ T

by propositional reasoning

(For the curious: Why are we allowed to do this? Well, case analysis is a “macro
step” that can be understood in terms of good old propositional reasoning. (Yes,
propositional reasoning packs a lot of punch.) Here is the idea.

Given a formula G to be proved, if we can identify a formula F which makes is
possible to prove G when F is true and when F is false (generally, such an F will
control a conditional such as if), then we can rewrite G as:

G

by propositional reasoning (using true =⇒ p ≡ p)

true =⇒ G

by propositional reasoning (using p ∨ ¬p ≡ true)
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(F ∨ ¬F ) =⇒ G

by propositional reasoning

(F =⇒ G) ∧ (¬F =⇒ G)

And this is what case analysis gives you. If you choose F correctly, this technique
can help. Note that you can choose anything for F . )

Case analysis is especially handy to prove equivalences of Boolean expressions.

In particular, remember when I flubbed the definition of and in ACL2 back in lecture 10,
and I claimed that the two definitions I gave in fact were equivalent? Here is a proof, using
case analysis.

The definition of and is as follows:

(defun and (x y)

(if x y x))

Here is an “alternate” definition:

(defun alt-and (x y)

(if x y NIL))

I claim that the following is valid (= (and x y) (alt-and x y)), and here is a proof:

(= (and x y) (alt-and x y))

by definition of and and alt-and

(= (if x y x) (if x y NIL))

by case analysis on x

x =⇒ (= (if x y x) (if x y NIL)) ∧ ¬x =⇒ (= (if x y x) (if x y NIL))

Let’s prove the two conjuncts separately:

x =⇒ (= (if x y x) (if x y NIL))

by assumption x and if axioms

x =⇒ (= y y)

by reflexivity of = and propositional reasoning
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and

¬x =⇒ (= (if x y x) (if x y NIL))

by nil axiom

(= x NIL) =⇒ (= (if x y x) (if x y NIL))

by assumption (= x NIL) and if axioms

(= x NIL) =⇒ (= NIL NIL)

by reflexivity of = and propositional reasoning

In fact, let’s settle something that may have left you wondering a bit. (Or maybe not; who
knows?) As you may have noticed, we can write a formula exp ∧ exp’, but also (and exp

exp’). In homeworks 2 and 3, we have essentially been using those interchangeably. Does
that make sense? After all, they are different formulas, if only because they are written
differently: the first is a conjunction of two ACL2 expressions, while the second is a single
ACL2 expression, which in fact corresponds to a big if expression. The reason why we can
flip between the two without batting an eye is that they are in fact equivalent expressions,
as the following theorem shows:

Theorem 1. a ∧ b ≡ (and a b)

Proof. By case analysis on a, a ∧ b ≡ (and a b) is equivalent to

(a =⇒ (a ∧ b ≡ (and a b))) ∧ (¬a =⇒ (a ∧ b ≡ (and a b)))

and we prove the two conjuncts separately.

The first conjunct:

a =⇒ (a ∧ b ≡ (and a b))

by definition of and

a =⇒ (a ∧ b ≡ (if a b a))

by assumption a and if axiom

a =⇒ (a ∧ b ≡ b)

by propositional reasoning, since p =⇒ (p ∧ q ≡ q) is valid
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And the second conjunct:

¬a =⇒ (a ∧ b ≡ (and a b))

by definition of and

¬a =⇒ (a ∧ b ≡ (if a b a))

by assumption ¬a and if axiom

¬a =⇒ (a ∧ b ≡ a)

by propositional reasoning, since ¬p =⇒ (p ∧ q ≡ p) is valid

ut

It turns out this is the case for all Boolean operations in ACL2. Recall the definitions:

(defun or (x y)

(if x x y))

(defun not (x)

(if x NIL T))

(defun implies (x y)

(if x (if y T NIL) T))

(defun iff (x y)

(if x (if y T NIL) (if y NIL T)))

Exercise: prove the following theorems

(a ∨ b) ≡ (or a b)

(¬a) ≡ (not a)

(a =⇒ b) ≡ (implies a b)

(a ≡ b) ≡ (iff a b)
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