
Logic and Computation Lecture 14
CSU 290 Spring 2009 (Pucella) Thursday, Feb 12, 2009

Quiz: Given (defun second (L) (car (cdr L))), prove that (= (second (cons a (cons

b c))) b).

Proving Conditional Equality Formulas

Last time, we saw proofs for theorems of the form (= exp exp’). That’s an important class
of theorems, and everal of the theorems we care about for proving program correctness take
that form.

Another very important class of theorems, which you can think as a generalization of the
above, are theorems of the form: F =⇒ (= exp exp’), that is, that two expressions are
equal when some conditions F are met. We will develop a bunch of standard techniques for
dealing with such formulas that do not rely on expanding out the =⇒ into ∨. The formula
F in the above is often called the context, or the assumptions.

To help us with such formulas, we introduce a variant of the Rule of Equality Substitution,
which lets us substitute equals for equals in the right-hand side of the implication, when the
equality is given in the context.

Rule of Equality Substitution 2: We can rewrite a formula of the form
F ∧ (= exp exp’) =⇒ G by replacing occurrences of exp in G by exp’.

Thus, for example, we can rewrite F ∧ (= x y) =⇒ (= (foo x) (bar z)) into F ∧
(= x y) =⇒ (= (foo y) (bar z)).

Without further ado, here is an example, a generalization of Theorem 2 in Lecture 13. I am
listing all steps explicitly, just so that you see where everything is used.

Theorem 1. (endp x) =⇒ (= (app x y) y)

Proof.

(endp x) =⇒ (= (app x y) y)

by endp axiom

(= (endp x) T) =⇒ (= (app x y) y)

by definition of app

(= (endp x) T) =⇒ (= (if (endp x) y (cons (car x) (app (cdr x) y))) y)

1



by equality substitution with (= (endp x) T)

(= (endp x) T) =⇒ (= (if T y (cons (car x) (app (cdr x) y))) y)

by if axiom

(= (endp x) T) =⇒ (= y y)

by reflexivity of = and propositional reasoning (since p =⇒ true is valid)

ut

Note the use of the Rule of Equality Substitution 2 in the 3rd step. Make sure you understand
where it comes from. Note also how we ended the proof. We got something that is an instance
of the propositional formula p =⇒ true, and you can convince yourself that that’s a valid
formula. That’s how most of our proofs for formulas of the form F =⇒ (= exp exp’) will
end.

Consider two other examples. Those two examples put together, we will see in a week, argue
that app is associative, that is, (= (app x (app y z)) (app (app x y) z)). We can’t
quite prove that yet, but we can prove those things that, when put together later, will give
us that.

First off, we can prove associativity in the special case where x is not a cons-structure.
This proof is fairly simple, and we will use it to illustrate a slight simplification for our
proofs. It is somewhat painful to carry the context along when it does not change, so we will
call the context C, and for ease of reference when applying substitutions from the context
name all the different formulas that appear in the context. (The context will generally be
a conjunction of formulas.) Note also that I skip the “obvious” subsitutions, like the car,
cons, if axioms. Stuff that by now you know how to do. I only justify the use of theorems,
assumptions from the context, Modus Ponens, or the use of interesting axioms.

Theorem 2. (endp x) =⇒ (= (app x (app y z)) (app (app x y) z))

Proof. There are two proofs. First, the “direct” one that uses good old substitution. Let

C = (endp x) [A1]

be the context.

C =⇒ (= (app x (app y z))

(app (app x y) z))

by definition of app

C =⇒ (= (app x (app y z))

(app (if (endp x)

y

(cons (car x) (app (cdr x) y))) z))

2



by A1

C =⇒ (= (app x (app y z))

(app y z))

by definition of app

C =⇒ (= (if (endp x)

(app y z)

(cons (car x) (app (cdr x) (app y z))))

(app y z))

by A1

C =⇒ (= (app y z)

(app y z))

by propositional reasoning

Here is an alternate proof that uses the already proved Theorem 1, and in which all the
action is in the context. It’s a bit trickier, and not that much shorter. And the context
grows, so it’s hard to give it a stable name. I use the Rule of Modus Ponens (MP) to apply
Theorem 1, which is of the right form if you’ll remember.

(endp x) =⇒
(= (app x (app y z)) (app (app x y) z))

by MP with appropriate instance of Theorem 1

(endp x) ∧ (= (app x (app y z)) (app y z)) =⇒
(= (app x (app y z)) (app (app x y) z))

by MP with appropriate instance of Theorem 1

(endp x) ∧ (= (app x (app y z)) (app y z)) ∧ (= (app x y) y) =⇒
(= (app x (app y z)) (app (app x y) z))

Okay, at this point let the context be

C = (endp x) [A1]

∧ (= (app x (app y z)) (app y z)) [A2]

∧ (= (app x y) y) [A3]

and we can continue the proof, which is now trivial:

C =⇒ (= (app x (app y z)) (app (app x y) z))

3



by A2

C =⇒ (= (app y z) (app (app x y) z))

by A3

C =⇒ (= (app y z) (app y z))

by propositional reasoning

ut

The second theorem says that app is associative if we assume it is associative for “smaller”
lists.

Theorem 3.

(consp x) ∧ (= (app (cdr x) (app y z)) (app (app (cdr x) y) z)) =⇒
(= (app x (app y z)) (app (app x y) z))

Proof. Let the context

C = (consp x) [A1]

∧ (= (app (cdr x) (app y z)) (app (app (cdr x) y) z)) [A2]

C =⇒ (= (app x (app y z))

(app (app x y) z))

by definition of app

C =⇒ (= (app x (app y z))

(app (if (endp x)

y

(cons (car x) (app (cdr x) y))) z))

by A1 (note the axiom (consp x) ≡ ¬(endp x))

C =⇒ (= (app x (app y z))

(app (cons (car x) (app (cdr x) y)) z))

by Theorem 1 from lecture 13

C =⇒ (= (app x (app y z))

(cons (car x) (app (app (cdr x) y) z)))

by A2

4



C =⇒ (= (app x (app y z))

(cons (car x) (app (cdr x) (app y z))))

by Theorem 1 from lecture 13

C =⇒ (= (app x (app y z))

(app (cons (car x) (cdr x)) (app y z)))

by MP with cons axiom — name the new context formula A3

C ∧ (= (cons (car x) (cdr x)) x) =⇒ (= (app x (app y z))

(app (cons (car x) (cdr x)) (app y z)))

by A3

C ∧ (= (cons (car x) (cdr x)) x) =⇒ (= (app x (app y z))

(app x (app y z)))

by propositional reasoning

ut

Remark 1: A Strategy for Starting Proofs

As a summary, let me point out some of the ways in which you should approach the question
of proving a particular formula we give you. It all depends on the form of the formula.

(1) If the formula is simply an equality such as (= exp exp’), then the proof will generally
consist in a sequence of substitutions.

(2) If the formula is of the form C =⇒ (= exp exp’), then identity the context as we have
done in this lecture, and prove the equality, possibly using formulas from the context.

(3) If the formula is of the form F ∧G, then try to prove F and G separately. The reason
why this work is that there is a result about our logic that says that whenever F is
a theorem (i,e,, F has a proof) and G is a theorem (i,e., G has a proof), then F ∧ G
is a theorem (i.e, it has a proof, and in fact that proof can be obtained by “merging”
together the proof of F and the proof of G)—and this is true no matter what F and
G are. Generally, F and G will be in one of the forms (1) or (2), and you can use the
techniques there for it.

(4) If the formula is not of the form (1), (2), or (3), it may be possible to use propositional
reasoning to convert the formula in that form. For instance, if the formula if of the
form F =⇒ (G =⇒ (= exp exp’)), which is not of any of the forms above, then you
can use the fact that p =⇒ (q =⇒ r) ≡ (p ∧ q) =⇒ r is a valid propositional formula
(check it!) to rewrite F =⇒ (G =⇒ (= exp exp’)) into (F ∧ G) =⇒ (= exp exp’),
which is of the form (2).

5



Remark 2: An Alternate Proof Method

If the formula you want to prove is of form (1) above, then what you have to prove is an
equality of the form (= exp exp’). Similarly if the formula you want to prove is of the form
(2) above, at least after you’ve identified and isolated the context, by which point you’re
usually only doing substitutions on the equality formula. (Not always though, note the use
of MP in the proof of Theorem 3.)

The way I’ve advocated you work on that equality is to simply rewrite it until you get to
something that is trivially true. (Generally, an instance of the reflexivity of = is what you
end up with.)

To use the high-school algebra example from lecture 9, here is how we prove equalities.

(a + b)2 = a2 + 2ab + b2

(a + b)(a + b) = a2 + 2ab + b2

a2 + ab + ba + b2 = a2 + 2ab + b2

a2 + ab + ab + b2 = a2 + 2ab + b2

a2 + 2ab + b2 = a2 + 2ab + b2

An alternative approach, which is the one used in Section 1, and that you might see in the
labs, is to derive an equality (a + b)2 = a2 + 2ab + b2

as follows. Start with one side of the equality, and try to rewrite it into the other side.

(a + b)2

= (a + b)(a + b)

= a2 + ba + ab + b2

= a2 + ab + ab + b2

= a2 + 2ab + b2

In other words, a proof that we would write:

(= exp1 exp)

justification 1

(= exp2 exp)

justification 2

(= exp3 exp)

justification 3

(= exp4 exp)

. . .

(= exp exp)

6



could be written

exp1

= justification 1

exp2

= justification 2

exp3

= justification 3

exp3

. . .

exp

You should play with a few examples (such as redoing the proofs from last lecture and this
lecture) to see how this can be used to prove an equality.

I would prefer if you used the first method, the one we used in class, because it is slightly
easier to use, even though it requires a bit more writing at times. Why is it easier? Because
the second method requires you to: (1) determine which side to start from, and choosing
the wrong side may cause you to have restart the proof from the beginning, and (2) some
equalities are easier to deal with if you can work on both sides of the equation—for those
equalities, the second method calls for showing that both sides of the equality are in fact
equal to a third expression, and requires you to be able to identify that third expression
when you encounter it, i.e., the proof for (= exp exp’) may end up looking like:

exp exp’

= =

exp1 exp1’

= =

... ...

= =

expN expN

7


