Theorem. A language A is regular if and only if there exists an NFA M such that $L(M) = A$.

Proof. The forward direction is trivial, since A regular means there is a DFA that recognizes it, and a DFA can be seen as an NFA rather immediately. So we focus on the backward direction. Assume that A is a language that is recognized by an NFA $M = (Q, \Sigma, \Delta, q_0, F)$. Without loss of generality, we know we can take the NFA to have no ϵ transitions. To show A is regular, we need to construct a DFA $M' = (R, \Sigma, \delta, r_0, G)$ that recognizes A. (To distinguish states of M from states of M', we use r to range over states of M', and R to represent the set of all states.)

The DFA M' will simulate the NFA M, in the sense that when following symbols of a string in M', the path taken will somehow capture all the possible paths that can be taken in M.

Define $M' = (R, \Sigma, \delta, r_0, G)$ by taking:

- $R = \{ r \mid r \subseteq Q \}$
- $\delta(r, a) = \{ q' \mid q' \in \Delta(q, a) \text{ for some } q \in r \}$
- $r_0 = \{ q_0 \}$
- $G = \{ r \mid r \cap F \neq \varnothing \}$

We now need to verify that $L(M') = L(M)$, that is, that M' and M recognize the same language. In other words, we need to show that for every string w, M accepts w if and only if M' accepts w.

We do this by induction on the length of w (since we need to show something true for an infinite number of things). First, define some useful notation. If δ is the transition relation of a DFA, then $\delta^*(q, w)$ tells you which state you end up in if you follow all the symbols in w from state q, based on the transition δ. Formally, δ^* is defined inductively on the structure of a string:

$$
\delta^*(q, \epsilon) = q \\
\delta^*(q, w \cdot a) = \delta(\delta^*(q, w), a),
$$

where $w \cdot a$ is the concatenation of string w and symbol a. It is not hard to show that a DFA $M = (Q, \Sigma, \delta, q_0, F)$ accepts w if and only if $\delta^*(q_0, w)$ is in F. Similarly, if Δ is the transition relation of an NFA without ϵ transitions, we can define Δ^* that tell you which states you can end up in if you follow
all the symbols in \(w \) from state \(q \) of the NFA, based on the transition \(\Delta \). As above:

\[
\Delta^*(q, \epsilon) = \{q\}
\]

\[
\Delta^*(q, w \cdot a) = \cup_{q' \in \Delta^*(q, w)} \Delta(q', a)
\]

Again, it is not hard to show that an NFA \(M = (Q, \Sigma, \Delta, q_0, F) \) accepts \(w \) if and only \(\Delta^*(q_0, w) \) has a state that appears in \(F \).

Now, given our automata \(M \) and \(M' \) as defined above, we show that for all strings \(w \), \(\delta^*(r_0, w) = \Delta^*(q_0, w) \). For the base case \(w = \epsilon \), since \(r_0 = \{q_0\} \), we have \(\delta^*(r_0, \epsilon) = \delta^*(\{q_0\}, \epsilon) = \{q_0\} = \Delta^*(q_0, \epsilon) \), as required.

For the inductive case, assume the result is true for a string \(w \), we need to show it is true for a string \(w \cdot a \): By definition, \(\delta^*(r_0, w \cdot a) = \delta(\delta^*(r_0, w), a) \).

By the induction hypothesis, \(\delta^*(r_0, w) = \Delta^*(q_0, w) \), and thus \(\delta^*(r_0, w \cdot a) = \delta(\Delta^*(q_0, w), a) \).

By the definition of \(\delta \), \(\delta(\Delta^*(q_0, w), a) = \cup_{q \in \Delta^*(q_0, w)} \Delta^*(q, a) \), which is just \(\Delta^*(q_0, w \cdot a) \), as required. This proves the statement.

Now, suppose that \(M \) accepts \(w \), that is, \(\Delta^*(q_0, w) \cap F \neq \emptyset \). By the above result, this is equivalent to \(\delta^*(r_0, w) \cap F \neq \emptyset \), that is, \(\delta^*(r_0, w) \in G \), and this is equivalent to \(M' \) accepting \(w \). This establishes that \(M \) and \(M' \) accept the same strings, that is, recognize the same language.