Using A Cost-Based Framework For Analyzing Denial Of Service

Presented By: Joan Paul

- A Cost-Based Framework for Analysis of Denial of Service in Networks Catherine Meadows (2001)
- Analyzing DoS-Resistance of Protocols Using a Cost-Based Framework – Vijay Ramachandran (2002)
- Modelling Denial of Service Attacks on JFK with Meadows's Cost-Based Framework – J. Smith, J.M. Gonzales-Nieto, C. Boyd (2006)

Denial of Sevice (DoS)

- Aims to exhaust the processing, memory, or network resources of target systems
- Solutions/mitigations
 - $_{\circ}$ increase defender's resources
 - reduce defender's cost of servicing a request
 - reduce memory storage cost state maintained by initiator
 - reduce processing cost have initiators aid the responder in doing expensive operations
 - increase cost of making a request puzzles
 - assuring origin of requests cookies

The Framework

- views DoS as a resource exhaustion problem
- cost-based, so capable of expressing DoS resistance in a quantifiable manner
- mostly applicable to cryptographic protocols, which uses most expensive form of authentication
- employs formal methods

Analyzing a Protocol's DoS-Susceptibility

- Show that certain properties hold at each step of the protocol
- Intruder's strengths may vary as protocol progresses

As compared to analyzing a protocol for authentication properties:

- Prove its requirements are satisfied when protocol completes
- Prove protocol is sound against a uniformly strong intruder

In the end, we would like to know whether or not the protocol allows the server/responder(potential victim) to be available to participate in a protocol execution with legitimate clients/initiators, even in the face of active attackers.

Fail-stop Protocols

- The cost-based framework is based on the notion of a fail-stop protocol
 - fail-stop halts upon the detection of any message that has been interfered with (replay, manufactured by intruder, out-of-sequence)
- Share desirable properties with DoS-resistant protocols
- Tend to use strong authentication up-front, making it vulnerable to DoS attacks
- Concept needs modification to make it applicable, by incorporating actions performed in a protocol execution and the cost associated with them.

Protocol Specification

Annotated Alice-and-Bob specification P is a sequence of statements of the form:

```
L: A \rightarrow B: T_1, ..., T_k \mid\mid M \mid\mid O_1, ..., O_n
```

Example:

 $\begin{array}{ll} L1. \ I \rightarrow R: computenonce_1(N_{\rm I}), \ N'_{\rm I} = hash_1(N_{\rm I}), \ createexp_1(g^i) \mid \mid \\ N'_{\rm I} \ , \ g^i \mid \mid \\ verifygroup(g^i), \ accept_1 \end{array}$

Cost Sets and Cost Functions

- Cost set C is a monoid with operator + and partial order \leq s.t. $x \leq x + y$ and $y \leq x + y$, $\forall x, y \in C$. $C : \{ 0 < \text{cheap} < \text{medium} < \text{expensive} \}$ cheap + medium = medium
- Event-cost function δ maps events to a cost set C and is 0 on accept events.

 δ (computenonce) = cheap, δ (accept) = 0

Cost Sets and Cost Functions

• A message-processing cost function, δ' , is defined on verifications events $\{V_i\} \subset \{O_j\}$ s.t. for $A \rightarrow B$: ...|| M || O_1 , ..., O_n , if $V_i = O_j$, then $\delta'(V_i) = \delta(O_1) + ... + \delta(O_j)$.

 $\delta'(\operatorname{verify}_2) = \delta(\operatorname{verify}_1) + \delta(\operatorname{verify}_2)$

• A protocol-engagement cost function, Δ , is defined on accept event O_n s.t. $\Delta(O_n)$ is the sum of all costs of operations at the receiver up to O_n , plus the costs of any immediate message preparations

 $\Delta(\operatorname{accept}_1) = \delta(\operatorname{verify}_1) + \delta(\operatorname{verify}_2) + \delta(\operatorname{compute}_3)$

 $\begin{array}{l} L1. \ I \rightarrow R: compute_1(X_1), \ compute_2(X_2) \ || \ X_1, \ X_2 \ || \\ verify_1(X_1), \ verify_2(X_2), \ accept_1 \end{array}$

L2: I \leftarrow R : compute₃(Y₁) || Y₁ || verify₃(Y₁), accept₂

Intruder Cost Functions

- Let G be the attacker cost set, and I be the set of intruder actions. The function ϕ maps intruder actions to their costs in G.
- The intruder cost function Φ is defined on a sequence of attacker actions as $\Phi(\{i_1, ..., i_n\}) = \phi(i_1) + ... + \phi(i_n)$ for $i_k \in I$.

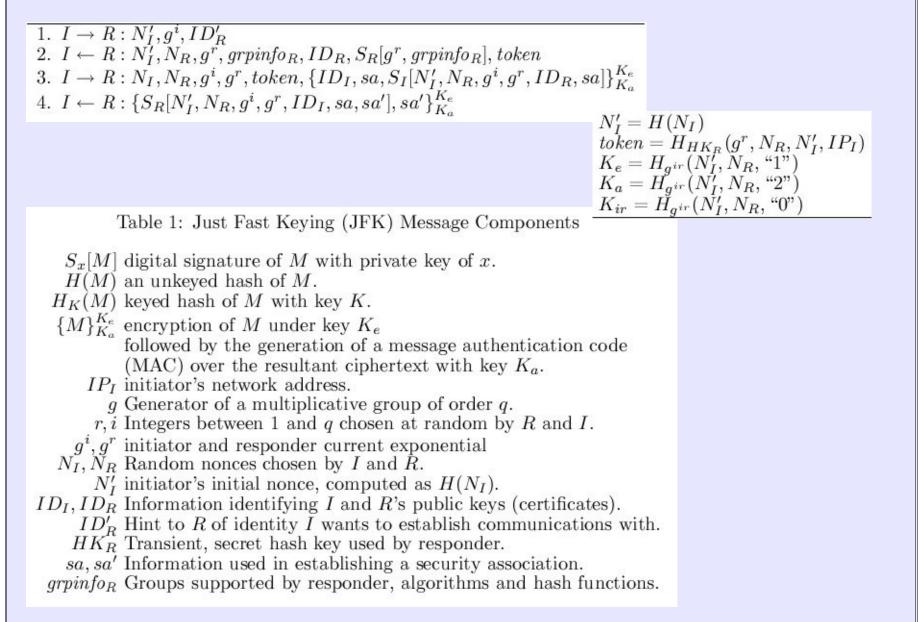
Modified Fail-stop

• The attack cost function, Θ , maps events from specification P to a cost set C. P is fail-stop with respect to Θ , if for every event $E \in P$, no

events occur after *E*, unless the cost to the attacker is at least $\Theta(E)$.

• Let C and G be the responder and the attacker cost sets respectively.

A tolerance relation T is the subset of $C \ge G$ that consists of all pairs (c, g) s.t. the defender will expend cost c only if the attacker will expend resources of at least cost g. A tuple (c', g') is said to be within the tolerance relation if there exists $(c, g) \in T$, s.t. $c' \le c$ and $g' \ge g$.


Tolerance Relations

- (0, 0), (cheap, cheap), (medium, medium), (expensive, expensive) acceptable
- (cheap, medium), (medium, expensive) more restrictive
- (medium, cheap) more tolerant
- (expensive, cheap) unacceptable

General Steps for Evaluating a Protocol's Susceptibility to DoS

- 1. Decide what your cost function is and what you assume to be the intruder's capabilities
- 2. Decide what your tolerance relation is
- 3. Determine the attack cost function, Θ for each step of the protocol
- 4. For each attack cost function in 3, determine that: a. if event E_1 is immediately preceding a verification event E_2 , then $(\delta'(E_1), \Theta(E_2)) \in T$
 - b. if E is an accept event, then $(\Delta(E), \Theta(E)) \in T$

Just Fast Keying (JFK) Protocol

Annotated Alice-and-Bob Specification of JFK

- $\begin{array}{lll} L3:\ I \rightarrow \ R: generatedh_1(g^{ir}), \ K=computekeys_1(\ N'_I, \ N_R, \ g^{ir}), \\ T=generatesig_1(\ N'_I, \ N_R, \ g^i, \ g^r, \ ID_R, \ sa), \ C'=encrypt_1(K, \ \{ID_I, \ T, \ sa\}), \\ C=generatemac_2(K, \ C') \ || \ \ N'_I, \ \ N_R, \ g^i, \ g^r, \ token, \ C, \ C' \ || \\ N'_I=hash_2(N_I), \ verify_1(token=generatemac_3(K_R, \ \ \{g^r, \ N_R, \ N'_I, \ IP_I\}), \\ generatedh_2(g^{ir}), \ K=computekeys_2(N'_I, \ N_R, \ g^{ir}), \\ verify_2(C=generatemac_4(K, \ C')), \ decrypt_1(K, \ C'), \ verifysig_2(T), \ accept_3 \end{array}$
- L4: $I \leftarrow R$: W=generatesig₂(N'_I, N_R, gⁱ, g^r, ID_I, sa, sa'), D'=encrypt₂(K, {W, sa'}), D=generatemac₅(K, D') || D', D || verify(D=generatemac₆(K, D')), decrypt₂(K, D'), verifysig₃(W), accept₄

Applying the Framework on JFK

- C and $G : \{ 0 < cheap < medium < expensive \}$
- T = { (cheap, cheap), (cheap, medium), (cheap, expensive), (medium, cheap), (medium, medium), (medium, expensive), (expensive, expensive) }
- Events and associated costs:
 - δ (computenonce) = cheap
 - $_{\circ} \delta(\text{hash}) = \text{cheap}$
 - δ (createexp) = expensive
 - δ (verifygroup) = medium
 - δ (generatemac) = medium

- δ (generateh) = expensive
- $_{\circ} \delta$ (computekeys) = medium
- δ (generatesig) = expensive
- δ (verifysig) = expensive
- δ (en/decrypt) = medium

JFK Analysis – Evaluation of Costs

Evaluation up to event $accept_1$:

- $\Theta(accept_1) = cheap$, since createexp could be spoofed and $\phi(spoofexp) = cheap$
- $\Delta(\operatorname{accept}_1) = \delta(\operatorname{verifygroup}) + \delta(\operatorname{computenonce}_2) + \delta(\operatorname{generatemac}_1) = \operatorname{medium}$

 $(\Delta(\operatorname{accept}_1), \Theta(\operatorname{accept}_1)) = (\operatorname{medium}, \operatorname{cheap}) \in T$

JFK Analysis – Evaluation of Costs Evaluation up to $accept_2$: L2: $I \leftarrow R$: computenonce₂(N_R), token=generatemac₁($K_{R_{r}}$ {g^r, $N_{R_{r}}$ N'_I, IP_I}), || N'_{I} , N_{R} , g^{r} , groupinfo_R, ID_{R} , $S_{R}\{g^{r}$, groupinfo_R\}, token || verifysig₁, accept₂ • $\Delta(\operatorname{accept}_2) = \delta(\operatorname{verifygroup}) + \delta(\operatorname{computenonce}_2)$ + δ (generatemac₁) = medium + cheap + medium = medium • $\Theta(\operatorname{accept}_2) = \operatorname{cheap}$, since spoofing exponent from L_1 is cheap and $\phi(\text{accept}_2) = 0$, and attacker need not do an actual verifysig₁ which is normally expensive $(\Delta(\operatorname{accept}_2), \Theta(\operatorname{accept}_2)) = (\operatorname{medium}, \operatorname{cheap}) \in T$

JFK Analysis – Evaluation of Costs

Evaluation up to accept₃:

Message processing costs:

- $\delta'(\operatorname{verify}_1) = \operatorname{medium}$, resulting in a tolerance relation (medium, cheap) and $(\delta'(\operatorname{verify}_1), \Theta(\operatorname{receive} \operatorname{msg} 3) \in T$
- $\delta'(verify_2) = expensive$, since responder must do exponentiation and key derivation before message authentication can be verified

JFK Analysis – Evaluation of Costs

Message processing cost (contd.):

- $\Theta(\text{verify}_1) = \text{cheap}$, since spoofing C and C' is cheap, so: $(\delta'(\text{verify}_2), \Theta(\text{verify}_1)) = (\text{expensive}, \text{cheap}) \notin T$ which means possible DoS attack on the protocol
- $\delta'(\operatorname{verifysig}_2) = \operatorname{expensive}$ $\Theta(\operatorname{verify}_2) = \operatorname{expensive}$, since attacker must construct message that passes verify_1 and verify_2 so: $(\delta'(\operatorname{verifysig}_2), \Theta(\operatorname{verify}_2)) \in T$

Protocol engagement costs:

- $\Delta(accept_3) = expensive$, this includes message generated in L_4
- $\Theta(\operatorname{accept}_3) = \operatorname{expensive}$, so: $(\Delta(\operatorname{accept}_3), \Theta(\operatorname{accept}_3)) \in T$

Framework Limitations

How about distributed denial of service(DDoS)? Modify the application of the framework by:

- determine precise relationships between elements in cost set medium cost = two cheap events expensive event = three medium cost events
- identifying the computational events whose results can be reused and represent costs of those events with a fractional modifier *n*, number of nodes over which the event is distributed

 ϕ (createexp) = expensive


- ϕ (shareexp) = (1/n) * expensive = cheap (for larger n)
- ϕ (shareexp) = (1/n) * expensive = medium (for smaller n)

Other Limitations of the Framework

- the need for more refined, realistic, and sensitive cost functions
 - comparing difficulty of two distinct operations
 - may not be interested in just cost but its ratio to available resources
- attacker's capabilities do not always equal defender's capabilities
 - $_{\circ}\,$ assumptions have to be made about what the attackers are capable of
- does not address bandwidth exhaustion
- application of the framework for protocol analysis is not automated

Applicability of the Framework to Existing Tools and Models

- Could possibly modify and use tools that use state exploration techniques (FDR/Casper and ${\rm Mur}\varphi,$ Interrogator, NRL) since standard intruder model is part of the tool
- Could possibly use high-level protocol description languages (CAPSL, Casper) since
 - $_{\circ}\,$ these are based on Alice-and-Bob notation
 - translators for most of these languages infer the operations directly from specification, so just need to add an estimate cost of each type of operations

Functions and Definitions

An Alice-and-Bob specification is a sequence of statements of the form A \rightarrow B: M where M is the message sent from A to B.

Annotated Alice-and-Bob specification P is a sequence of statements of the form:

 $L: A \rightarrow B: T_1, ..., T_k \mid\mid M \mid\mid O_1, ..., O_n$

 $T_1, ..., T_k$ – ordered steps taken by A to produce M $O_1, ..., O_n$ – ordered steps taken by B to process and verify M

Functions and Definitions

Let $L_i : A \to B: T_1, ..., T_k \mid\mid M \mid\mid O_1, ..., O_n$ be the ith line in an annotated Alice-and-Bob specification. X is an event in L_i if:

- 1. X is one of T_i or O_j
- 2. X is a "A sends M to B" or "B receives M from A" $% A^{\prime\prime}$

Events $T_{\rm i}$ and "A sends M to B" are said to occur at A, and events $O_{\rm j}$ and "B receives M from A" are said to occur at B.

Types of events:

- normal always succeed, occur at sender or receiver
- verification may succeed or fail, occur only at receiver
- accept reserved event, $O_{\rm n},$ that only occurs at the receiver

Modelling DDoS in Cost-Based Framework

- Consider *n* coordinated attackers, generating a single g^i resulting in an event cost for createexp to be amortized over all attackers (i.e. $\phi(\text{shareexp}) = (1/n) * \text{expensive}$)
- g^{ir} in message three can also be computed once and distributed (i.e. $\phi(\text{sharedh}) = (1/n) * \text{expensive}$)
- For smaller values of n, $\phi(\text{shareexp}) = \phi(\text{sharedh}) = \text{medium}$, and $\phi(\text{shareexp}) = \phi(\text{sharedh}) = \text{cheap}$, for larger values of n

Possible JFK DDoS Attack

- Attackers will want responder to perform the expensive signature verification in message three, requiring generation of valid messages up to and including decrypt₁.
- In constructing message three, attackers have event cost function equivalent to legitimate protocol participants except:
 - ϕ (sharedh) = (1/n) * expensive (medium for smaller n)
 - $_{\circ} \phi$ (spoofsig) = cheap

```
Hence:

\Theta(\text{decrypt}_1) = \phi(\text{sharedh}) + \delta(\text{computekeys}_1) + \phi(\text{spoofsig}) + \delta(\text{encrypt}_1) + \delta(\text{generatemac}_2) = \text{medium}
```

Message Processing Cost Calculation

- Message processing cost (δ ') to responder in order to verify that message three is bogus include: δ '(verifysig₂) = δ (hash₂) + 2 * δ (generatemac) + δ (generatedh₂) + δ (computekeys₂) + δ (decrypt₁) + δ (verifysig₂)
- Dominated by expensive costs resulting in a tolerance relation:
 (δ'(verifysig₂), Θ(decrypt₁)) = (expensive, medium) ∉ T, a possible DoS attack