
Using A Cost-Based Framework For Analyzing 
Denial Of Service

Presented By: Joan Paul

● A Cost-Based Framework for Analysis of Denial of Service in 
Networks – Catherine Meadows (2001)

● Analyzing DoS-Resistance of Protocols Using a 
Cost-Based Framework – Vijay Ramachandran (2002)

● Modelling Denial of Service Attacks on JFK with Meadows's Cost-
Based Framework – J. Smith, J.M. Gonzales-Nieto, C. Boyd (2006)



 Denial of Sevice (DoS)

● Aims to exhaust the processing, memory, or network 
resources of target systems

● Solutions/mitigations 
○ increase defender's resources
○ reduce defender's cost of servicing a request 

■ reduce memory storage cost – state maintained by 
initiator

■ reduce processing cost – have initiators aid the 
responder in doing expensive operations

○ increase cost of making a request – puzzles 
○ assuring origin of requests – cookies 



 The Framework

● views DoS as a resource exhaustion problem 

● cost-based, so capable of expressing DoS resistance in a 
quantifiable manner

● mostly applicable to cryptographic protocols, which uses 
most expensive form of authentication

● employs formal methods



Analyzing a Protocol's DoS-Susceptibility

● Show that certain properties hold at each step of the 
protocol

● Intruder's strengths may vary as protocol progresses

As compared to analyzing a protocol for authentication 
properties:
● Prove its requirements are satisfied when protocol 

completes
● Prove protocol is sound against a uniformly strong 

intruder

In the end, we would like to know whether or not the 
protocol allows the server/responder(potential victim) to 
be available to participate in a protocol execution with 
legitimate clients/initiators, even in the face of active 
attackers.



Fail-stop Protocols

● The cost-based framework is based on the notion of a 
fail-stop protocol 
○ fail-stop - halts upon the detection of any message that 

has been interfered with (replay, manufactured by 
intruder, out-of-sequence) 

● Share desirable properties with DoS-resistant protocols

● Tend to use strong authentication up-front, making it 
vulnerable to DoS attacks

 
● Concept needs modification to make it applicable, by 

incorporating actions performed in a protocol execution 
and the cost associated with them.



Protocol Specification

Annotated Alice-and-Bob specification P is a sequence of 
statements of the form:

L : A  B: T1, ..., Tk || M ||O1, ..., On

Example:

L1. I  R : computenonce 1(NI), N'I=hash1(NI), createexp1(gi) || 
N'I , gi || 
verifygroup(gi), accept1



Cost Sets and Cost Functions

● Cost set C is a monoid with operator + and 
partial order ≤ s.t. x ≤ x + y and  y ≤ x + y, x, y  C.

C  : { 0 < cheap < medium < expensive }
cheap + medium = medium

● Event-cost function  maps events to a cost set C and 
is 0 on accept events. 

 (computenonce) = cheap,  (accept) = 0



Cost Sets and Cost Functions

● A message-processing cost function, ', is defined on  
verifications events {Vi} {O j} s.t. for  A B: ...|| M || O 1, ..., On, 
if  Vi = Oj , then '(V i) = (O 1) + ... + (O j).

 '(verify 2) = (verify 1) + (verify 2) 

● A protocol-engagement cost function, , is defined on accept  
event On  s.t. (O n) is the sum of all costs of operations at the 
receiver up to On, plus the costs of any immediate message
preparations

(accept 1) = (verify 1) + (verify 2) + (compute 3)

L1. I  R : compute 1(X1), compute2(X2) || X1, X2 || 
     verify1(X1), verify2(X2), accept1

   L2: I  R : compute 3(Y1) || Y1 || verify3(Y1), accept2



Intruder Cost Functions

● Let G  be the attacker cost set, and I  be the set of 
intruder actions.  The function  maps intruder actions  
to their costs in G.  

● The intruder cost function  is defined on a sequence of  
attacker actions as ({i 1, ..., in}) =  (i 1) + ... +  (i n) for 
ik  I.



Modified Fail-stop

● The attack cost function, , maps events from specification  P 
to a cost set C. 
P  is fail-stop with respect to , if for every event  E   P,  no 
events occur after E, unless the cost to the attacker is at least 

( E).

● Let C and G  be the responder and the attacker cost sets 
respectively.
A tolerance relation T  is the subset of C  x G  that consists of 
all pairs (c, g ) s.t. the defender will expend cost c  only if the 
attacker will expend resources of at least cost g. 
A tuple (c', g' ) is said to be within the tolerance relation if 
there exists (c, g )   T,  s.t. c' ≤ c and g' ≥ g.
 



Tolerance Relations

● (0, 0), (cheap, cheap), (medium, medium), 
(expensive, expensive) - acceptable

● (cheap, medium), (medium, expensive) – more restrictive

● (medium, cheap) – more tolerant

● (expensive, cheap) – unacceptable



General Steps for Evaluating a Protocol's 
Susceptibility to DoS

1. Decide what your cost function is and what you assume 
to be the intruder's capabilities

2. Decide what your tolerance relation is

3. Determine the attack cost function,  for each step of 
the protocol

4. For each attack cost function in 3, determine that:
a. if event E1 is immediately preceding a verification 

 event E2, then ('(E1), (E2))  ∈ T
b. if E is an accept event, then ((E), (E)) ∈ T



Just Fast Keying ( JFK ) Protocol



Annotated Alice-and-Bob Specification
of JFK

L1. I  R : computenonce 1(NI), N'I=hash1(NI), createexp1(gi) || 
N'I , gi || verifygroup(gi), accept1

L2: I  R : computenonce 2(NR), token=generatemac1(KR, {gr, NR, N'I, IPI}), ||
N'I ,  NR, gr, groupinfoR, IDR, SR{gr, groupinfoR}, token ||
verifysig1, accept2

L3: I   R : generatedh 1(gir), K=computekeys1( N'I ,  NR, gir ), 
T=generatesig1( N'I , NR, gi , gr,  IDR, sa), C'=encrypt1(K, {IDI, T, sa}), 
C=generatemac2(K, C') || N'I ,  NR, gi , gr, token, C, C' || 
N'I=hash2(NI), verify1(token=generatemac3(KR, {gr, NR, N'I, IPI}), 
generatedh2(gir), K=computekeys2(N'I, NR, gir),
verify2(C=generatemac4(K, C')), decrypt1(K, C'), verifysig2(T), accept3

L4: I  R : W=generatesig 2( N'I , NR, gi , gr,  IDI, sa, sa'), D'=encrypt2(K,{W, sa'}), 
D=generatemac5(K, D') || D', D || 
verify(D=generatemac6(K, D')), decrypt2(K, D'), verifysig3(W), accept4



Applying the Framework on JFK

● C  and G : { 0 < cheap < medium < expensive }

● T  = { (cheap, cheap), (cheap, medium), (cheap, 
expensive), (medium, cheap), (medium, medium), 
(medium, expensive), (expensive, expensive) }

● Events and associated costs:

○ (computenonce) = cheap
○ (hash) = cheap
○ (createexp) = expensive
○ (verifygroup) = medium
○ (generatemac) = medium

○ (generateh) = expensive
○ (computekeys) = medium
○ (generatesig) = expensive
○ (verifysig) = expensive
○ (en/decrypt) = medium



JFK Analysis – Evaluation of Costs

Evaluation up to event accept1 :

L1. I  R : computenonce 1(NI), N'I = hash1(NI), createexp1(gi) || 
N'I , gi || verifygroup(gi), accept1

● (accept 1) = cheap, since createexp could be spoofed 
 and (spoofexp) = cheap

● (accept 1) = (verifygroup) + (computenonce  2) +
(generatemac1)  = medium 

( (accept 1), (accept 1) )  = (medium, cheap) ∈ T



JFK Analysis – Evaluation of Costs

Evaluation up to accept2 : 
L2: I  R : computenonce 2(NR), 

token=generatemac1(KR, {gr, NR, N'I, IPI}), ||
 N'I ,  NR, gr, groupinfoR, IDR, SR{gr, groupinfoR}, token ||

verifysig1, accept2

● (accept 2) = (verifygroup) + (computenonce  2) 
+ (generatemac1) 

   = medium + cheap + medium
   = medium 

● (accept 2) = cheap, since spoofing exponent from L1 is 
cheap and (accept 2) = 0, and attacker need 
not do an actual verifysig1 which is normally 
expensive

( (accept 2), (accept 2) )  = (medium, cheap) ∈ T



JFK Analysis – Evaluation of Costs

Evaluation up to accept3:

L3: I   R : generatedh 1(gir), K=computekeys1( N'I ,  NR, gir ), 
T=generatesig1( N'I , NR, gi , gr,  IDR, sa), C'=encrypt1(K, {IDI, T, sa}), 
C=generatemac2(K, C') || N'I ,  NR, gi , gr, token, C, C' || 
N'I=hash2(NI), verify1(token=generatemac3(KR, {gr, NR, N'I, IPI}), 

generatedh2(gir), K=computekeys2(N'I, NR, gir), 
verify2(C=generatemac4(K, C')), decrypt1(K, C'), verifysig2(T), accept3

Message processing costs:

● '(verify 1) = medium, resulting in a tolerance relation 
(medium, cheap) and  ( '(verify 1), (receive msg 3)    T

● '(verify 2) = expensive, since responder must do 
exponentiation and key derivation  before message 
authentication can be verified



JFK Analysis – Evaluation of Costs

Message processing cost (contd.):

● (verify 1) = cheap, since spoofing C and C' is cheap, so:
( '(verify 2), (verify 1)) = (expensive, cheap)  T
which means possible DoS attack on the protocol

● '(verifysig 2) = expensive
(verify 2) = expensive, since attacker must construct 

message that passes verify1 and verify2 so:
( '(verifysig 2), (verify 2)) T 

Protocol engagement costs:

● (accept 3) = expensive, this includes message generated 
in L4

● (accept 3) = expensive, so: ( (accept 3), (accept 3)) T 



Framework Limitations

How about distributed denial of service(DDoS)?
Modify the application of the framework by:

○ determine precise relationships between elements in 
cost set 

medium cost = two cheap events
expensive event = three medium cost events

○ identifying the computational events whose results can 
be reused and represent costs of those events with a 
fractional modifier n, number of nodes over which the 
event is distributed

(createexp) = expensive 
(shareexp) = (1/n) * expensive = cheap (for larger n)
(shareexp) = (1/n) * expensive = medium (for smaller n)



Other Limitations of the Framework

● the need for more refined, realistic, and sensitive cost 
functions
○ comparing difficulty of two distinct operations
○ may not be interested in just cost but its ratio to 

available resources 

● attacker's capabilities do not always equal defender's 
capabilities
○ assumptions have to be made about what the attackers 

are capable of 

● does not address bandwidth exhaustion

● application of the framework for protocol analysis is not 
automated



Applicability of the Framework to 
Existing Tools and Models 

● Could possibly modify and use tools that use state 
exploration techniques (FDR/Casper and Mur, 

Interrogator, NRL) since standard intruder model is part 
of the tool

● Could possibly use high-level protocol description 
languages (CAPSL, Casper) since 
○ these are based on Alice-and-Bob notation
○ translators for most of these languages infer the 

operations directly from specification, so just need to 
add an estimate cost of each type of operations



Q & A



Functions and Definitions

An Alice-and-Bob specification is a sequence of 
statements of the form A  B: M where M is the message 
sent from A to B.

Annotated Alice-and-Bob specification P is a sequence of 
statements of the form:

L : A  B: T1, ..., Tk || M ||O1, ..., On

T1, ..., Tk – ordered steps taken by A to produce M

O1, ..., On – ordered steps taken by B to process 
and verify M



Functions and Definitions

Let Li : A  B: T1, ..., Tk || M ||O1, ..., On be the ith line in an 
annotated Alice-and-Bob specification. X is an event in Li 

if:
1. X is one of Ti or Oj

2. X is a “A sends M to B” or “B receives M from A”

Events Ti and “A sends M to B” are said to occur at A, and 
events Oj and “B receives M from A” are said to occur at 
B.

Types of events:
● normal – always succeed, occur at sender or receiver
● verification – may succeed or fail, occur only at 

receiver
● accept – reserved event, On, that only occurs at the 

receiver



Modelling DDoS in Cost-Based Framework

● Consider n coordinated attackers, generating a single gi 

resulting in an event cost for createexp to be amortized 
over all attackers (i.e. (shareexp) = (1/n) * expensive)

● gir in message three can also be computed once and 
distributed (i.e. (sharedh) = (1/n) * expensive)

● For smaller values of n, 
(shareexp) = (sharedh) = medium,  and 
(shareexp) = (sharedh) = cheap, for larger values of n



Possible JFK DDoS Attack

● Attackers will want responder to perform the expensive 
signature verification in message three, requiring 
generation of valid messages up to and including 
decrypt1. 

● In constructing message three, attackers have event cost 
function equivalent to legitimate protocol participants 
except:
○ (sharedh) = (1/n) * expensive (medium for smaller n)
○ (spoofsig) = cheap

Hence:
(decrypt 1) = (sharedh) + (computekeys 1) +  

(spoofsig) + (encrypt 1) + (generatemac 2)
    = medium



Message Processing Cost Calculation

● Message processing cost (') to responder in order to 
verify that message three is bogus include:
'(verifysig2) = (hash2) + 2 * (generatemac) + 

   (generatedh2) + (computekeys2) + 
   (decrypt1) + (verifysig2)

● Dominated by expensive costs resulting in a tolerance 
relation:
('(verifysig2), (decrypt 1)) = (expensive, medium)  T,  
a possible DoS attack


