References:

Becker, Moritz; Sewell, Pete€Cassandra: Flexible Trust Management,
Applied to Electronic Health Record2004

Li, Ninghui; Mitchell, JohnDatalog with Constraints: A Foundation for
Trust Management Languagekan. 2003.

© 2006 Richard M. Conlan

@ Cassandra
e

. ¢ Cassandra Is designed so that the expressiveness of
language can be tuned by selecting an appropriate
constraint domain

% 7 + Research grounded in a substantial real-world examp
for a national Electronic Health Record (EHR) system
based on the UK National Health Service procureme
exercise

¢ Case study includes 310 rules with 58 roles

¢ Paper is a precursor to PhD thesis on the topic

© 2006 Richard M. Conlan

}'?:.;: Electronic Health Record (EHR)

. ¢+ EHR schemes are now being developed in Europe,
. Canada and Australia to provide “cradle-to-grave”
summaries of patients’ records.

In England the National Health Service is developing
nationwide Integrated Care Records Service to provic
patients with 24-hour on-line access to EHRs on a
central data-spine.

Deployment is scheduled between 2005 and 2010.

Needless to say, the proposed system has proved hig
controversial.

© 2006 Richard M. Conlan

- ¢ Patients will refuse to share their data if they do not t
the system or do not have sufficient control of use of

their data.

Physicians will not want to use the system if it is

cumbersome to use, If the access restrictions are too
strict, or the response times too high.

Any policy system has to comply with relevant
legislation and regulations such as the Data Protectio
Act, Mental Health Act, Human Fertilization and
Embryology Act, the Abortion Regulations and the
Venereal Diseases Regulations.

© 2006 Richard M. Conlan

@ EHR Policy Concerns (cont.)

. ¢ Itis evident that a policy must be adaptable enough
just to function when deployed, but to be adapted to
Incorporate emerging restrictions and extensions to
reflect the evolution of the public debate

¥ ¢+ Health organizations will likely have customized
policies that are compatible but different from the
nationally accepted one

¢+ Other EHR countries may require radically different
policy specifics and/or adopt separate policy systems

© 2006 Richard M. Conlan

Trust Management

Traditionalaccess contralelies on a notion of identity

In decentralized, open, distributed systems the resou
owner and requester are often unknown to one anoth

Instead of identity access control decisions are basec
policy statementsiade by multiple principles

Some statements are digitally signed — these are callg¢
credentials

Some statements are stored in local trusted storage
these are calledccess rules

© 2006 Richard M. Conlan

Trust Management (cont.)

: Previous work on trust management suggests it is desirable
factor out the policy from the application code
express policy in terms of roles instead of individuals

support distributed access control with policies that
express automatic credential retrieval over the netwo
and strategies to establish mutual trust between stra

be scalable to large numbers of sites and entities

be adaptable to different administrative domains with
Independent policies or local adaptations of a default

policy

© 2006 Richard M. Conlan

Trust Management Scenario

i 2 ¢ A requestersubmits a request, possibly supported by i

. 7% set ofcredentialgssued by other parties, to an
authorizer which specifies access rules governing
access to the requested resource(s).

Theauthorizermay have to contact the parties that
Issued theredentialsto import additional policy
considerations.

© 2006 Richard M. Conlan

Tensions in the Design of a Real-World
4 Policy Language

: ¢ It should:

— should be expressive so intended policies can be
written naturally

— small and elegant
— avoid ad hoc features

¢+ BUT, it should be efficiently computable in practical
examples

© 2006 Richard M. Conlan

@ Cassandra

IS a language and system for expressing access cont
policies

supports credential-based access control and rules c:
refer to remote policies

policy language is small and it has a formal semantics
for query evaluation and for the access control engine

policies are expressed in a language based on Datalg
(Datalog with constraints)

© 2006 Richard M. Conlan

Cassandra Syntax

Predicate names p ::= canActivate | hasActivated | permits | canDeactivate |
isDeactivated | canReqCred, and user-defined predicate names
Policy rule: EEG-:"'#':T'E!'ss-pD(FD:] — loc;@issy.p; (€1), ..., loc,Qiss,.py(€y), C
Credential (rule): Ejoc@F;cc.po(ép) — ¢
Aggregation rule: Ej,.QFE;,..plagg-op{z),v) — Ej-Qiss.q(T),c
where agg-op is group or count

Ceq €Xpressions; e ni=x | E
Ceq constraints: ¢ = true |false |[e=¢' |cAc | eV e

Coexpressionse i=x | E | N |C| ()| (e1,...en) | 7€) | R(e1,...en) | Ale1,..,en) |
fler,cen) | 02| {e1,nen}|e—€|ene |eUe
Co constraints ¢ ;= true | false |e =€’ |e £ €' |e <€ |eCe' |end |eVe
and derivable constraints: ¢ := ... [e €€’ | e £ €' | e € [eq, €] | [e1. €] C [e], €}]
Co types T = entity | int | const | unit | 71 x ... x 7, | role(7) | action(T) | set(T)

!

Access-control operations:
doAction(A(€)), activate(R(€)), deactivate(E,,, R(€)), reqCred(EQF; ..p(T) — ¢

© 2006 Richard M. Conlan

=T o ek
- Tty

i

1% DATALOG

- ¢ DATALOG is often assoclated with database systems
with its origins found in that field in the late 1970s.

; ¢+ More generally, DATALOG is a restricted form of logif
g programming with variables, predicates, and constan
but without function symbols.

¢ DATALOG [Prolog (syntactically)

© 2006 Richard M. Conlan

RO(tO,l’ e ’tO,kO) - Rl(tl,l’ e ’tl,kl)’ "t RO(tn,l’ e ’tn,kn)

“ ¢+ R,,...,R are predicate relation symbols
3 : : -
~= + Each ternt;; is either a constant or a variable

¢ The formulaRy(ty 4,...,tg o) IS called theneadof the rule
and the remainder is called thedy

¢ If n=0 then the rule Is calledfact
¢+ A DATALOG program is a finite set of such rules

© 2006 Richard M. Conlan

. ¢ The notion ofconstraint databasegrew out of research
on DATALOG and Constraint Logic Programming.

. 27 ¢ The notion ofconstraint domaingeneralizes the
e

relational model of data by allowing infinite relations
that are finitely representable using constraints.

¢+ DATALOG¢ is effectively DATALOG with constraints.
The term refers to a wide range of specific languages
since different constraint domains can be considered.

© 2006 Richard M. Conlan

DEF: A constraint domain@is a 3-tuple¥,D,1).

=" + > consists of a set of constants and a collectidaa
“= predicate and function symbols

D consists of a sdéd called the universe of the structurg
a mapping from each constant to an elemenb, ia
mapping from eack-ary predicate symbol Ik to ak-

ary relation ovebD, and a mapping from ea&kary
function symbol ir> to a function fronD Xinto D.

¢+ LIs a class of quantifier-free first-order formulas oker

© 2006 Richard M. Conlan

ey ot et
e iy

%
byt

@ Constraint Domains Examples

5

5

=

. ¢ Equality: The signaturé consists of a set of constants

. and one predicate =. A primitive constraint has the fo
X=yorx=c. DATALOG can be regarded as a specifi
instance of DATALOG with this constraint domain.

Order: The signatur& has two predicates: = and <. A
primitive constraint has the form@y, x @c, orc éx
where& 2.

Linear: The signatur& has the function symbols + ang
* and the predicates {#, <, >,<, =}. A primitive
constraint has the fori;yx; + ... + ¢ %, @Db.

© 2006 Richard M. Conlan

'@ Constraint Database

- DEF: Let ® be a constraint domain.

ot o s
B
..-1‘.-.-. i} b -,_
ety [e ’I
L) ' = iy
v i ¥ B]]
£ 1
S =
= H L) -
i, &
.

A constraint k-tuples a finite conjunctiong, 5 ... o &,
where eacly is a primitive constraint iP.

A k-ary constraint relations a finite set

r={u,....lu}, where eachy is a constraink-tuple
over the same variables.

Theformula corresponding tthe constraint relation
IS the disjunctiory; ... ¢4y

A constraint databases a finite collection of
constraint relations.

© 2006 Richard M. Conlan

@ DATALOGCRule

o
 Rllozeitosd) # Ralty et Rolt o nged: o

¢ (Y Is a constraint in the set of all variables in tthie.
‘s« If n=0 then the rule is calledcanstraint fact

A constraint rule witm hypotheses may be appliednto
constraint facts to produeefacts.

The process of applying a rule to a set of facts require
form of quantifier elimination.

Intuitively the head of the rule holds if the body holds.

© 2006 Richard M. Conlan

- ¢ In TM languages it Is often useful to appeal to
constraints from several domain.

. '© % + Some useful constraint domains in trust management
| — Tree: Each constant takes the form;s..,a>, which

represents the node for whialy..., a, are the strings on the
path from the root to a given node. A primitive styaint is of
the formx = y or xf<a,,...,a> in which@0 {=, <, <,1,1=}.
X < <a,,...,a> meansis a child of the specified node axrd
<a,...,a> meansis an ancestor of the specified node.

— Range: Syntactically sugared order domain.

— Discrete w/ sets. Syntactically sugared equality domain.

© 2006 Richard M. Conlan

DATALOG® Example

¢+ An entity A grantsB permission to connect to machines in the domain
“neu.edu” at port 80 with a validity period froimto t..

grantConnect(A, B, h, p, v) :- h{ <edu,neu>, p = 80, v Ot).

An entity A grantsB permission to delegate the same permissions.

grantConnect(A, x, h, p, V) :-
grantConnect(B, x, h, p, v), h{ <edu,neu>, p = 80, v O][t,,t.].

An entity B grantsD similar permissions for the ccs subdomain.
grantConnect(B, D, h, p, V) :- h{ <edu,neu,ccs>, v O[t,t,].

From the above constraint facts and rules we can derive:

grantConnect(A, D, h, p, V) :- h{ <edu,neu,ccs>, p = 80, v O[t,,tJ].

© 2006 Richard M. Conlan

Cassandra Syntax (again)

Predicate names p ::= canActivate | hasActivated | permits | canDeactivate |
isDeactivated | canReqCred, and user-defined predicate names
Policy rule: EEG-:"'#':T'E!'ss-pD(FD:] — loc;@issy.p; (€1), ..., loc,Qiss,.py(€y), C
Credential (rule): Ejoc@F;cc.po(ép) — ¢
Aggregation rule: Ej,.QFE;,..plagg-op{z),v) — Ej-Qiss.q(T),c
where agg-op is group or count

Ceq €Xpressions; e ni=x | E
Ceq constraints: ¢ = true |false |[e=¢' |cAc | eV e

Coexpressionse i=x | E | N |C| ()| (e1,...en) | 7€) | R(e1,...en) | Ale1,..,en) |
fler,cen) | 02| {e1,nen}|e—€|ene |eUe
Co constraints ¢ ;= true | false |e =€’ |e £ €' |e <€ |eCe' |end |eVe
__a

and derivable constraints: ¢ := ... [e €€’ | e £ €' | e € [eq, €] | [e1. €] C [e], €}]
Co types T = entity | int | const | unit | Ty x ... X 7, | role(T) | action(T) | set(T)

!

Access-control operations:
doAction(A(€)), activate(R(€)), deactivate(E,,, R(€)), reqCred(EQF; ..p(T) — ¢

© 2006 Richard M. Conlan

Ty Lo e

Constraint Domair@,

5

: ¢ Atomic expressions can be variables, entities,
. Integers, constants of various types, the empt
set[] and the universal s€l.

¢+ Compound expressions can be built from ato
ones recursively: tuplegy...,e), tuple
projectionsmt(e), rolesR(e,,...,e,), actions
A(e,...,e), function applicationfe,,...,e,), and
the set expressions.

© 2006 Richard M. Conlan

g A i BT AL
: 4
=

/ e\ R

Constraint Domaii, (cont.)

: ¢ Constraints include equalities= €', inequalities
. eZe', Integer orderg < e’, set containments
e [e’, and conjunctions and disjunctions of
those. It also includes constraints that can be
defined in terms of the existing ones such as
non-membership LI €’ andinteger ranges

e []

€,6)].

Aty

pe system where type&sare of the formnt,

entity, const unit, T, X ... X T, role(t), action(t),
andsef(1).

© 2006 Richard M. Conlan

Roles and Actions

- ¢ RolesandActionsare parameterized for higher
expressiveness

¢ For exampleClinician(org, spcty) has parameters for
ie& the health organization and the specialty of the clinici

¢+ Cassandra’s notion of role is more general than that
typically used

¢+ For example, théccess—denied—-by—patient role
may indicate that a record item is concealed by the
patient

© 2006 Richard M. Conlan

(@ Predicates

. There are six special predicates in Cassandra:

canActivate(er) expresses the fact that the enéty
can activate the role

hasActivated(er) indicates thae has activated

permits(e,a) says the entitg can perform actioa

© 2006 Richard M. Conlan

. 4. canDeactivate(e,e,r) sayse, can deactivate,’s
activationr. This can cause cascading deactivation

isDeactivated(er) indicates the deactivation of
entitye's roler

canReqCred(e,e,.p(e’)) says thag, is allowed to
request credentials issued &yand asserting the
predicatgy(e’) wheree€' is a vector.

Policy writers can also introduce user-defined predicat

© 2006 Richard M. Conlan

T
Bl o g O
[e o
J o =4 ,:
s b
=] »

o '}
]

o

: ¢ Cassandra extends DATALOG predicates by adding
. anotion of an issuing entity and a storage location.

E1oc@E ssPo(€) € 10¢,@isS,.py(€),...Joc,@iss, (&), C

p; are the predicate names

e are (possibly empty) expression tuples

c Is a constraint from some fixed constraint domain
E.. andE, are the location and issuer of the rule
loc, andiss are entities or entity-typed variables

© 2006 Richard M. Conlan

@ | Rules (cont.
7 (cont.)

: ¢ A policy rule of the form

Eloc@Eiss-pO(eO) é C
IS called acredential

B0+ Ifitis sent over the network it can be though of as a
certificate assertingy(ey), sighed and issued I&y., and
belonging to and stored By,

¢ UsuallyE,,. = E

¢+ A Cassandraolicy of an entityE,. IS a finite set of
rules (including credentials) with locatidf),.

© 2006 Richard M. Conlan

: ¢ A body predicate

B@C.p(e)
can refer to a remote location.

¢ SayAis the local entity. IB # AthenA will contactB
over the network and delegate authoritygtm deduce
the predicate.

¢+ Before attempting the reducti@will first deduce

B@B.canReqCred{,C.p(e))

© 2006 Richard M. Conlan

'@ Cassandra Example

: ¢ Supposeé\’s policy contains the rules:

R, = A@A.likes(AX) € x@y.likesfy,x), X #y
R, = A@B.likes(B,A) < true

TR So, sayA tries to deduce whethérlikes herself:

A@y.likesly,A) € AZy
¢+ Using R, A can deduce:
A@A.likes(AA)

© 2006 Richard M. Conlan

(el oy e A
. 1_,_;_?_' .mlv-._. L

5

Cassandra Example (cont.)

- ¢ Now sayC'’s policy contains the rules:

"7l R; = C@D.likes(D,C) < true
i 3 =+ So,Atries to deduce whether she likesAssumingA

cannot do this locallyA automatically requests frofx
C@y.likes(y,C) &« C#y
¢ Cfirst must check whethekis honor the request:

C@C.canReqgCred(A,y.likes(y)& C#y

© 2006 Richard M. Conlan

(el oy e A
. 1_,_;_?_' .mlv-._. L

5

Cassandra Example (cont.)

. ¢ Cfirst must check whether to honor the request:

C@C.canReqgCred(A,y.likes(y)& C#y

= 70 ¢ The result will either be false or some constraint on t

variabley. Perhap€ cannot reveal information froia

to A, so it returns the constramtz E. SoC tries to
deduce:

C@y.likes(y, o< Czylly#E

¢+ Cdeduces this using; and return€@D.likes(D,G to
A, which allowsA to deduceA@A.likes(A,(.

© 2006 Richard M. Conlan

Questions?

© 2006 Richard M. Conlan

