
© 2006 Richard M. Conlan

CassandraCassandra

References:
Becker, Moritz; Sewell, Peter. Cassandra: Flexible Trust Management,
Applied to Electronic Health Records. 2004.

Li, Ninghui; Mitchell, John. Datalog with Constraints: A Foundation for
Trust Management Languages. Jan. 2003.

© 2006 Richard M. Conlan

Cassandra

♦ Cassandra is designed so that the expressiveness of the
language can be tuned by selecting an appropriate
constraint domain

♦ Research grounded in a substantial real-world example
for a national Electronic Health Record (EHR) system
based on the UK National Health Service procurement
exercise

♦ Case study includes 310 rules with 58 roles

♦ Paper is a precursor to PhD thesis on the topic

© 2006 Richard M. Conlan

Electronic Health Record (EHR)

♦ EHR schemes are now being developed in Europe,
Canada and Australia to provide “cradle-to-grave”
summaries of patients’ records.

♦ In England the National Health Service is developing a
nationwide Integrated Care Records Service to provide
patients with 24-hour on-line access to EHRs on a
central data-spine.

♦ Deployment is scheduled between 2005 and 2010.

♦ Needless to say, the proposed system has proved highly
controversial.

© 2006 Richard M. Conlan

EHR Policy Concerns

♦ Patients will refuse to share their data if they do not trust
the system or do not have sufficient control of use of
their data.

♦ Physicians will not want to use the system if it is
cumbersome to use, if the access restrictions are too
strict, or the response times too high.

♦ Any policy system has to comply with relevant
legislation and regulations such as the Data Protection
Act, Mental Health Act, Human Fertilization and
Embryology Act, the Abortion Regulations and the
Venereal Diseases Regulations.

© 2006 Richard M. Conlan

EHR Policy Concerns (cont.)

♦ It is evident that a policy must be adaptable enough not
just to function when deployed, but to be adapted to
incorporate emerging restrictions and extensions to
reflect the evolution of the public debate

♦ Health organizations will likely have customized
policies that are compatible but different from the
nationally accepted one

♦ Other EHR countries may require radically different
policy specifics and/or adopt separate policy systems

© 2006 Richard M. Conlan

Trust Management

♦ Traditional access controlrelies on a notion of identity

♦ In decentralized, open, distributed systems the resource
owner and requester are often unknown to one another

♦ Instead of identity access control decisions are based on
policy statementsmade by multiple principles

♦ Some statements are digitally signed – these are called
credentials

♦ Some statements are stored in local trusted storage –
these are called access rules

© 2006 Richard M. Conlan

Trust Management (cont.)

Previous work on trust management suggests it is desirable to:

• factor out the policy from the application code

• express policy in terms of roles instead of individuals

• support distributed access control with policies that
express automatic credential retrieval over the network
and strategies to establish mutual trust between strangers

• be scalable to large numbers of sites and entities

• be adaptable to different administrative domains with
independent policies or local adaptations of a default
policy

© 2006 Richard M. Conlan

Trust Management Scenario

♦ A requestersubmits a request, possibly supported by a
set of credentialsissued by other parties, to an
authorizer, which specifies access rules governing
access to the requested resource(s).

♦ The authorizermay have to contact the parties that
issued the credentialsto import additional policy
considerations.

© 2006 Richard M. Conlan

Tensions in the Design of a Real-World
Policy Language

♦ It should:

– should be expressive so intended policies can be
written naturally

– small and elegant

– avoid ad hoc features

♦ BUT, it should be efficiently computable in practical
examples

© 2006 Richard M. Conlan

Cassandra

♦ is a language and system for expressing access control
policies

♦ supports credential-based access control and rules can
refer to remote policies

♦ policy language is small and it has a formal semantics
for query evaluation and for the access control engine

♦ policies are expressed in a language based on DatalogC

(Datalog with constraints)

© 2006 Richard M. Conlan

Cassandra Syntax

© 2006 Richard M. Conlan

DATALOG

♦ DATALOG is often associated with database systems
with its origins found in that field in the late 1970s.

♦ More generally, DATALOG is a restricted form of logic
programming with variables, predicates, and constants,
but without function symbols.

♦ DATALOG ⊂ Prolog (syntactically)

© 2006 Richard M. Conlan

DATALOG Rule

R0(t0,1,…,t0,k0) :- R1(t1,1,…,t1,k1),…, R0(tn,1,…,tn,kn)

♦ R0,…,Rn are predicate relation symbols

♦ Each term ti,j is either a constant or a variable

♦ The formula R0(t0,1,…,t0,k0) is called the headof the rule
and the remainder is called the body

♦ If n = 0 then the rule is called a fact

♦ A DATALOG program is a finite set of such rules

© 2006 Richard M. Conlan

DATALOGC

♦ The notion of constraint databasesgrew out of research
on DATALOG and Constraint Logic Programming.

♦ The notion of constraint domainsgeneralizes the
relational model of data by allowing infinite relations
that are finitely representable using constraints.

♦ DATALOGC is effectively DATALOG with constraints.
The term refers to a wide range of specific languages
since different constraint domains can be considered.

© 2006 Richard M. Conlan

Constraint Domains

DEF: A constraint domain Φ is a 3-tuple (Σ,D,L).

♦ Σ consists of a set of constants and a collection of k-ary
predicate and function symbols

♦ D consists of a set D called the universe of the structure,
a mapping from each constant to an element in D, a
mapping from each k-ary predicate symbol in Σ to a k-
ary relation over D, and a mapping from each k-ary
function symbol in Σ to a function from D k into D.

♦ L is a class of quantifier-free first-order formulas over Σ

© 2006 Richard M. Conlan

Constraint Domains Examples

♦ Equality: The signature Σ consists of a set of constants
and one predicate =. A primitive constraint has the form
x = y or x = c. DATALOG can be regarded as a specific
instance of DATALOGC with this constraint domain.

♦ Order: The signature Σ has two predicates: = and <. A
primitive constraint has the form x θ y, xθ c, or c θ x
where θ ∈Σ.

♦ Linear: The signature Σ has the function symbols + and
* and the predicates {=, ≠, <, >, ≤, ≥}. A primitive
constraint has the form c1x1 + … + ckxk θ b.

© 2006 Richard M. Conlan

Constraint Database

DEF: Let Φ be a constraint domain.
1. A constraint k-tupleis a finite conjunction φ1 ∧ … ∧ φN

where each φi is a primitive constraint in Φ.
2. A k-ary constraint relationis a finite set

r = {ψ1,…,ψM}, where each ψi is a constraint k-tuple
over the same variables.

3. The formula corresponding tothe constraint relation r
is the disjunction ψ1∨…∨ ψM.

4. A constraint databaseis a finite collection of
constraint relations.

© 2006 Richard M. Conlan

DATALOGC Rule

R0(t0,1,…,t0,k0) :- R1(t1,1,…,t1,k1),…, R0(tn,1,…,tn,kn),ψ0

♦ ψ0 is a constraint in the set of all variables in the rule.
♦ If n = 0 then the rule is called a constraint fact

♦ A constraint rule with n hypotheses may be applied to n
constraint facts to produce m facts.

♦ The process of applying a rule to a set of facts requires a
form of quantifier elimination.

♦ Intuitively the head of the rule holds if the body holds.

© 2006 Richard M. Conlan

Constraint Domains in Trust Management

♦ In TM languages it is often useful to appeal to
constraints from several domain.

♦ Some useful constraint domains in trust management:
– Tree: Each constant takes the form <a1,…,ak>, which

represents the node for which a1,…, ak are the strings on the
path from the root to a given node. A primitive constraint is of
the form x = y or xθ <a1,…,ak> in which θ ∈ {=, <, ≤, , =}.
x < <a1,…,ak> means x is a child of the specified node and x 
<a1,…,ak> means x is an ancestor of the specified node.

– Range: Syntactically sugared order domain.

– Discrete w/ sets: Syntactically sugared equality domain.

© 2006 Richard M. Conlan

DATALOGC Example
♦ An entity A grants B permission to connect to machines in the domain

“neu.edu” at port 80 with a validity period from t1 to t3.

grantConnect(A, B, h, p, v) :- h  <edu,neu>, p = 80, v ∈∈∈∈[t1,t3].

♦ An entity A grants B permission to delegate the same permissions.

grantConnect(A, x, h, p, v) :-

grantConnect(B, x, h, p, v), h  <edu,neu>, p = 80, v ∈∈∈∈[t1,t3].

♦ An entity B grants D similar permissions for the ccs subdomain.

grantConnect(B, D, h, p, v) :- h  <edu,neu,ccs>, v ∈∈∈∈[t2,t4].

♦ From the above constraint facts and rules we can derive:

grantConnect(A, D, h, p, v) :- h  <edu,neu,ccs>, p = 80, v ∈∈∈∈[t2,t3].

© 2006 Richard M. Conlan

Cassandra Syntax (again)

© 2006 Richard M. Conlan

Constraint Domain C0

♦ Atomic expressions can be variables, entities,
integers, constants of various types, the empty
set ∅ and the universal set Ω.

♦ Compound expressions can be built from atomic
ones recursively: tuples (e1,…,en), tuple
projections πn

i(e), roles R(e1,…,en), actions
A(e1,…,en), function applications f(e1,…,en), and
the set expressions.

© 2006 Richard M. Conlan

Constraint Domain C0 (cont.)

♦ Constraints include equalities e= e’, inequalities
e ≠ e’, integer orders e< e’, set containments
e ⊆ e’, and conjunctions and disjunctions of
those. It also includes constraints that can be
defined in terms of the existing ones such as
non-membership e ⊄ e’ and integer ranges
e ∈ [e1,e2].

♦ A type system where types τ are of the form int,
entity, const, unit, τ1 x … x τn, role(τ), action(τ),
and set(τ).

© 2006 Richard M. Conlan

Roles and Actions

♦ Rolesand Actionsare parameterized for higher
expressiveness

♦ For example Clinician(org,spcty) has parameters for
the health organization and the specialty of the clinician

♦ Cassandra’s notion of role is more general than that
typically used

♦ For example, the Access-denied-by-patient role
may indicate that a record item is concealed by the
patient

© 2006 Richard M. Conlan

Predicates

There are six special predicates in Cassandra:

1. canActivate(e,r) expresses the fact that the entity e
can activate the role r

2. hasActivated(e,r) indicates that e has activated r

3. permits(e,a) says the entity e can perform action a

Predicates (cont.)

4. canDeactivate(e1,e2,r) says e1 can deactivate e2’s
activation r. This can cause cascading deactivation

5. isDeactivated(e,r) indicates the deactivation of
entity e’s role r

6. canReqCred(e1,e2.p(e’)) says that e1 is allowed to
request credentials issued by e2 and asserting the
predicate p(e’) where e’ is a vector.

Policy writers can also introduce user-defined predicates.

© 2006 Richard M. Conlan

© 2006 Richard M. Conlan

Rules

♦ Cassandra extends DATALOGC’s predicates by adding
a notion of an issuing entity and a storage location.

Eloc@Eiss.p0(e0) � loc1@iss1.p1(e1),...,locn@issn.pn(en), c

♦ pi are the predicate names

♦ ei are (possibly empty) expression tuples

♦ c is a constraint from some fixed constraint domain

♦ Eloc andEiss are the location and issuer of the rule

♦ loci andissi are entities or entity-typed variables

© 2006 Richard M. Conlan

Rules (cont.)

♦ A policy rule of the form

Eloc@Eiss.p0(e0) � c

is called a credential.

♦ If it is sent over the network it can be though of as a
certificate asserting p0(e0), signed and issued by Eiss, and
belonging to and stored atEloc.

♦ Usually Eloc = Eiss

♦ A Cassandra policyof an entity Eloc is a finite set of
rules (including credentials) with location Eloc.

© 2006 Richard M. Conlan

Rules (cont.)

♦ A body predicate

B@C.p(e)

can refer to a remote location.

♦ Say A is the local entity. If B ≠ A then A will contact B
over the network and delegate authority to B to deduce
the predicate.

♦ Before attempting the reduction B will first deduce

B@B.canReqCred(A,C.p(e))

© 2006 Richard M. Conlan

Cassandra Example

♦ Suppose A’s policy contains the rules:

R1 ≡ A@A.likes(A,x) � x@y.likes(y,x), x ≠ y

R2 ≡ A@B.likes(B,A) � true

♦ So, say A tries to deduce whether A likes herself:

A@y.likes(y,A) � A ≠ y

♦ Using R2 A can deduce:

A@A.likes(A,A)

© 2006 Richard M. Conlan

Cassandra Example (cont.)

♦ Now say C’s policy contains the rules:

R3 ≡ C@D.likes(D,C) � true

♦ So, A tries to deduce whether she likes C. Assuming A
cannot do this locally, A automatically requests from C:

C@y.likes(y,C) � C ≠ y

♦ C first must check whether A is honor the request:

C@C.canReqCred(A,y.likes(y,C)) � C ≠ y

© 2006 Richard M. Conlan

Cassandra Example (cont.)

♦ C first must check whether to honor the request:

C@C.canReqCred(A,y.likes(y,C)) � C ≠ y

♦ The result will either be false or some constraint on the
variable y. Perhaps C cannot reveal information from E
to A, so it returns the constraint y ≠ E. So C tries to
deduce:

C@y.likes(y,C) � C ≠ y ∧ y ≠ E

♦ C deduces this using R3 and returns C@D.likes(D,C) to
A, which allows A to deduce A@A.likes(A,C).

© 2006 Richard M. Conlan

Questions?

