Block Ciphers

CSG 252 Lecture 3

September 30, 2008

Riccardo Pucella

Product Ciphers

- A way to combine cryptosystems
- For simplicity, assume endomorphic cryptosystems
 - Where C=P

$$\circ$$
 S₁ = (P, P, K₁, E₁, D₁)

$$\circ$$
 S₂ = (P, P, K₂, E₂, D₂)

Product cryptosystem $S_1 \times S_2$ is defined to be
(P, P, K₁ × K₂, E, D)

where

$$e_{(k_1,k_2)}(x) = e_{k_2}(e_{k_1}(x))$$

 $d_{(k_1,k_2)}(y) = d_{k_1}(d_{k_2}(y))$

Product Ciphers

- If Pr₁ and Pr₂ are probability distributions over the keys of S₁ and S₂ (resp.)
 - Take Pr on $S_1 \times S_2$ to be $Pr(\langle k_1, k_2 \rangle) = Pr_1(k_1)Pr_2(k_2)$
 - That is, keys are chosen independently
- \odot Some cryptosystems commute, $S_1 \times S_2 = S_2 \times S_1$
 - Not all cryptosystems commute, but some do
- Some cryptosystems can be decomposed into S₁×S₂
 - Need key probabilities to match too
 - Affine cipher can be decomposed into S×M=M×S

Product Ciphers

- A cryptosystem is idempotent if SXS=S
 - Again, key probabilities must agree
 - E.g. shift cipher, substitution cipher, Vigenère cipher...
- An idempotent cryptosystem does not gain additional security by iterating it
- But iterating a nonidempotent cryptosystem does!

A Nonidempotent Cryptosystem

- Fix m > 1
- Let Sperm be the permutation cipher:
 - $OC = P = (Z_{26})^m$
 - ⊗ K = { π | π a permutation {1,...,m} → {1,...,m} }
 - e_{π} (<x₁, ..., x_m>) = <x_{\pi(1)}, ..., x_{\pi(m)}>
- Theorem: S_{sub} × S_{perm} is not idempotent

Iterated Ciphers

- A form of product ciphers
- Idea: given S a cryptosystem, an iterated cipher is SXSX...XS
 - N = number of iterations (= rounds)
 - A key is of the form <k₁, ..., k_N>
 - Only useful if S is not idempotent
- Generally, the key is derived from an initial key K
 - \odot K is used to derive $k_1, ..., k_N = key schedule$
 - Derivation is via a fixed and known algorithm

Iterated Ciphers

- \odot Iterated ciphers are often described using a function $g:P\times K\to C$
 - g is the round function
 - ø g (w, k) gives the encryption of w using key k
- To encrypt x using key schedule <k1, ..., kN>:

$$w_0 \leftarrow x$$
 $w_1 \leftarrow g(w_0, k_1)$
 $w_2 \leftarrow g(w_1, k_2)$
...
 $w_N \leftarrow g(w_{N-1}, k_N)$
 $y \leftarrow w_N$

Iterated Ciphers

- To decrypt, require g to be invertible when key argument is fixed
 - There exists g^{-1} such that $g^{-1}(g(w, k), k) = w$
 - g injective in its first argument
- To decrypt cipher y using key schedule <k1, ..., kN>

$$w_N \leftarrow y$$

 $w_{N-1} \leftarrow g^{-1} (w_N, k_N)$
 $w_{N-2} \leftarrow g^{-1} (w_{N-1}, k_{N-1})$
...
 $w_0 \leftarrow g^{-1} (w_1, k_1)$
 $x \leftarrow w_0$

Substitution-Permutation Networks

- A form of iterated cipher
 - Foundation for DES and AES
- Plaintext/ciphertext: binary vectors of length l×m
 (Z₂)^{lm}
- Substitution π_S: (Z₂)^l → (Z₂)^l
 - Replace I bits by new I bits
 - Often called an S-box
 - Creates confusion
- Permutation π_P: $(Z_2)^{lm}$ → $(Z_2)^{lm}$
 - Reorder Im bits
 - Creates diffusion

Substitution-Permutation Networks

- N rounds
- Assume a key schedule for key $k = \langle k_1, ..., k_{N+1} \rangle$
 - Don't care how it is produced
 - Round keys have length lxm
- Write string x of length $1 \times m$ as $x_{<1} \parallel ... \parallel x_{< m}$
 - The Where $x_{\langle i \rangle} = \langle x_{(i-1)l+1}, ..., x_{il} \rangle$ of length length
- At each round but the last:
 - 1. Add round key bits to x
 - 2. Perform π_S substitution to each $x_{\langle i \rangle}$
 - 3. Apply permutation π_P to result
- Permutation not applied on the last round
 - Allows the "same" algorithm to be used for decryption

Substitution-Permutation Networks

Algorithmically (with key schedule $\langle k_1, ..., k_{N+1} \rangle$):

$$\begin{array}{l} w_0 \leftarrow x \\ \text{for } r \leftarrow 1 \text{ to N-1} \\ u^r \leftarrow w_{r-1} \oplus k_r \\ \text{for } i \leftarrow 1 \text{ to m} \\ v^r_{\langle i \rangle} \leftarrow \pi_S \left(u^r_{\langle i \rangle} \right) \\ w_r \leftarrow \langle v^r_{\pi P(1)}, ..., v^r_{\pi P(1 \times m)} \rangle \\ u^N \leftarrow w_{N-1} \oplus k_N \\ \text{for } i \leftarrow 1 \text{ to m} \\ v^N_{\langle i \rangle} \leftarrow \pi_S \left(u^N_{\langle i \rangle} \right) \\ y \leftarrow v^N \oplus k_{N+1} \end{array}$$

Example

- Stinson, Example 3.1
- 0 l = m = N = 4
 - So plaintexts are 16 bits strings
- @ Fixed πs that substitutes four bits into four bits
 - Table: E,4,D,1,2,F,B,8,3,A,6,C,5,9,0,7 (in hexadecimal!)
- \odot Fixed π_P that permutes 16 bits
 - Perm: 1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16
- Key schedule:
 - Initial key: 32 bits key K
 - Round r key: 16 bits of K from positions 1, 5, 9, 13

Comments

- We could use different S-boxes at each round
- Example not very secure
 - Key space too small: 2³²
- Could improve:
 - Larger key size
 - Larger block length
 - More rounds
 - Larger S-boxes

Linear Cryptanalysis

- Known-plaintext attack
 - Aim: find some bits of the key
- Basic idea: Try to find a linear approximation to the action of a cipher
- © Can you find a (probabilistic) linear relationship between some plaintext bits and some bits of the string produced in the last round (before the last substitution)?
 - If yes, then some bits occur with nonuniform probability
 - By looking at a large enough number of plaintexts, can determine the most likely key for the last round

Differential Cryptanalysis

- Usually a chosen-plaintext attack
 - Aim: find some bits of the key
- Basic idea: try to find out how differences in the inputs affect differences in the output
 - Many variations; usually, difference =
- For a chosen specific difference in the inputs, can you find an expected difference for some bits in the string produced before the last substitution is applied?
 - If yes, then some bits occur with nonuniform probability
 - By looking at a large enough number of pairs of plaintexts (x_1 , x_2) with $x_1 \oplus x_2$ = chosen difference, can

determine most likely key for last round

10 minutes break

DES

- "Data Encryption Standard"
 - Developed by IBM, from Lucifer
 - Adopted as a standard for "unclassified" data: 1977
- Form of iterated cipher called a Feistel cipher
- At each round, string to be encrypted is divided equally into L and R
- Round function g takes $L_{i-1}R_{i-1}$ and K_i , and returns a new string L_iR_i given by: $L_i = R_{i-1}$

$$R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$$

- Note that f need not be invertible!
 - To decrypt: $R_{i-1} = L_i$ $L_{i-1} = R_i \oplus f(L_i, K_i)$

DES

- DES is a 16 round Feistel cipher
- Block length: 64 bits
- Key length: 56 bits
- To encrypt plaintext x:
 - 1. Apply fixed permutation IP to x to get LoRo
 - 2. Do 16 rounds of DES
 - 3. Apply fixed permutation IP-1 to get ciphertext
- Initial and final permutations do not affect security
- Key schedule:

 - Round keys obtained by permutation of selection of bits from key K

DES Round

- To describe a round of DES, need to give function f
 - Takes string A of 32 bits and a round key J of 48 bits
- Occupating f (A, J):
 - 1. Expand A to 48 bits via fixed expansion E(A)
 - 2. Compute $E(A) \oplus J = B_0B_1...B_8$ (each B_i 6 bits)
 - 3. Use 8 fixed S-boxes S₁, ..., S₈, each {0,1}⁶ → {0,1}⁴
 Get C_i = S_i (B_i)
 - 4. Set $C = C_1C_2...C_8$ of length 32 bits
 - 5. Apply fixed permutation P to C

Comments on DES

- Key space is too small
 - © Can build specialized hardware to do automatic search
 - Known-plaintext attack
- Differential and linear cryptanalysis are difficult
 - Need 2⁴³ plaintexts for linear cryptanalysis
 - S-boxes resilient to differential cryptanalysis

AES

- "Advanced Encryption Standard"
 - Developed in Belgium (as Rijndael)
 - Adopted in 2001 as a new American standard
- Iterated cipher
- Block length: 128 bits
- 3 allowed key lengths, with varying number of rounds
 - @ 128 bits (N=10)
 - 192 bits (N=12)
 - 256 bits (N=14)

High-Level View of AES

- To encrypt plaintext x with key schedule $(k_0, ..., k_N)$:
 - 1. Initialize STATE to x and add (\oplus) round key k_0
 - 2. For first N-1 rounds:
 - a. Substitute using S-box
 - b. Permutation SHIFT-ROWS
 - c. Substitution MIX-COLUMNS
 - d. Add (1) round key ki
 - 3. Substitute using S-Box, SHIFT-ROWS, add kn
 - 4. Ciphertext is resulting STATE
- (Next slide describes the terms)

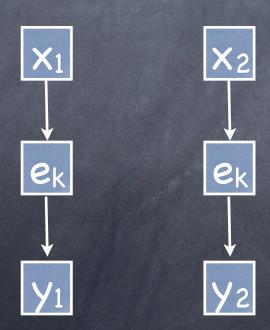
AES Operations

- STATE is a 4x4 array of bytes (= 8 bits)
 - Split 128 bits into 16 bytes
 - Arrange first 4 bytes into first column, then second, then third, then fourth
- S-box: apply fixed substitution $\{0,1\}^8$ → $\{0,1\}^8$ to each cell
- SHIFT-ROWS: shift second row of STATE one cell to the left, third row of STATE two cells to the left, and fourth row of STATE three cells to the left
- MIX-COLUMNS: multiply fixed matrix with each column

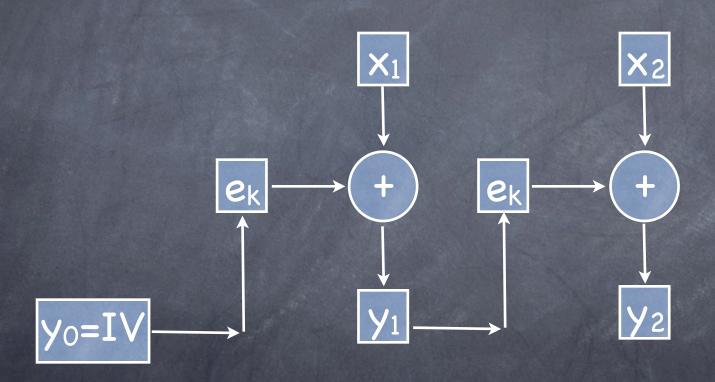
AES Key Schedule

- For N=10, 128 bits key
 - 16 bytes: k[0], ..., k[15]
- Algorithm is word-oriented (word = 4 bytes = 32 bits)
- A round key is 128 bits (= 4 words)
- Key schedule produces 44 words (= 11 round keys)
 - w[0], w[1], ..., w[43]
- o w[0] = <k[0], ..., k[3]>
- o w[1] = $\langle k[4], ..., k[7] \rangle$
- o w[2] = <k[8], ..., k[11]>
- o w[3] = <k[12], ..., k[15]>
- - Except at i multiples of 4 (more complex; see book)

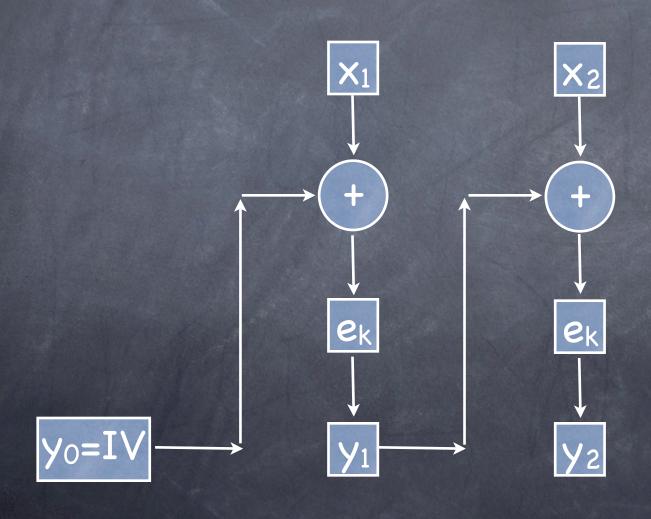
- How to use block ciphers when plaintext is more than block length
- © ECB (Electronic Codebook Mode):



© CFB (Cipher Feedback Mode):



© CBC (Cipher Block Chaining):



OFB (Output Feedback Mode)

