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Product Ciphers
• A way to combine cryptosystems
• For simplicity, assume endomorphic cryptosystems

• Where C=P

• S1 = (P, P, K1, E1, D1)
• S2 = (P, P, K2, E2, D2)

• Product cryptosystem S1×S2 is defined to be
(P, P, K1×K2, E, D)

where
         e(k1,k2)(x) = ek2(ek1(x))

d(k1,k2)(y) = dk1(dk2(y))



Product Ciphers

• If Pr1 and Pr2 are probability distributions over the 
keys of S1 and S2 (resp.)
• Take Pr on S1×S2 to be Pr(<k1,k2>) = Pr1(k1)Pr2(k2)
• That is, keys are chosen independently

• Some cryptosystems commute, S1×S2 = S2×S1

• Not all cryptosystems commute, but some do

• Some cryptosystems can be decomposed into S1×S2

• Need key probabilities to match too
• Affine cipher can be decomposed into S×M=M×S



Product Ciphers

• A cryptosystem is idempotent if S×S=S
• Again, key probabilities must agree
• E.g. shift cipher, substitution cipher, Vigenère 

cipher...

• An idempotent cryptosystem does not gain additional 
security by iterating it

• But iterating a nonidempotent cryptosystem does!



A Nonidempotent Cryptosystem

• Fix m > 1

• Let Ssub a substitution cipher over (Z26)m

• Let Sperm be the permutation cipher:
• C = P = (Z26)m
• K = { π | π a permutation {1,...,m} → {1,...,m} }
• eπ (<x1, ..., xm>) = <xπ(1), ..., xπ(m)>
• dπ (<y1, ..., ym>) = <yη(1), ..., yη(m)>, where η=π-1

• Theorem: Ssub × Sperm is not idempotent



Iterated Ciphers

• A form of product ciphers

• Idea: given S a cryptosystem, an iterated cipher is 
S×S×...×S
• N = number of iterations (= rounds)
• A key is of the form <k1, ..., kN>
• Only useful if S is not idempotent

• Generally, the key is derived from an initial key K
• K is used to derive k1, ..., kN = key schedule
• Derivation is via a fixed and known algorithm



Iterated Ciphers
• Iterated ciphers are often described using a function 

g : P × K → C
• g is the round function
• g (w, k) gives the encryption of w using key k

• To encrypt x using key schedule <k1, ..., kN>:
w0 ← x
w1 ← g (w0, k1)
w2 ← g (w1, k2)
...
wN ← g (wN-1, kN)
y ← wN



Iterated Ciphers
• To decrypt, require g to be invertible when key 

argument is fixed 
• There exists g-1 such that g-1 (g (w, k), k) = w
• g injective in its first argument

• To decrypt cipher y using key schedule <k1, ..., kN>
wN ← y
wN-1 ← g-1 (wN, kN)
wN-2 ← g-1 (wN-1, kN-1)
...
w0 ← g-1 (w1, k1)
x ← w0



Substitution-Permutation Networks
• A form of iterated cipher

• Foundation for DES and AES

• Plaintext/ciphertext: binary vectors of length l×m
• (Z2)lm

• Substitution πS : (Z2)l → (Z2)l
• Replace l bits by new l bits
• Often called an S-box
• Creates confusion

• Permutation πP : (Z2)lm → (Z2)lm
• Reorder lm bits
• Creates diffusion



Substitution-Permutation Networks
• N rounds
• Assume a key schedule for key k = <k1, ..., kN+1>

• Don’t care how it is produced
• Round keys have length l×m

• Write string x of length l×m as x<1> || ... || x<m>

• Where x<i> = <x(i-1)l+1, ..., xil> of length l

• At each round but the last:
1. Add round key bits to x
2.Perform πS substitution to each x<i>
3.Apply permutation πP to result

• Permutation not applied on the last round
• Allows the “same” algorithm to be used for decryption



Substitution-Permutation Networks
• Algorithmically (with key schedule <k1, ..., kN+1>):

w0 ← x
for r ← 1 to N-1

ur ← wr-1 ⊕ kr

for i ← 1 to m
vr<i> ← πS (ur<i>)

wr ← <vrπP(1), ..., vrπP(l×m)>
uN ← wN-1 ⊕ kN

for i ← 1 to m
vN<i> ← πS (uN<i>)

y ← vN ⊕ kN+1



Example
• Stinson, Example 3.1

• l = m = N = 4
• So plaintexts are 16 bits strings

• Fixed πS that substitutes four bits into four bits
• Table: E,4,D,1,2,F,B,8,3,A,6,C,5,9,0,7 (in hexadecimal!)

• Fixed πP that permutes 16 bits
• Perm: 1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16

• Key schedule:
• Initial key: 32 bits key K
• Round r key: 16 bits of K from positions 1, 5, 9, 13



Comments

• We could use different S-boxes at each round

• Example not very secure
• Key space too small: 232

• Could improve:
• Larger key size
• Larger block length
• More rounds
• Larger S-boxes



Linear Cryptanalysis
• Known-plaintext attack

• Aim: find some bits of the key

• Basic idea: Try to find a linear approximation to the 
action of a cipher

• Can you find a (probabilistic) linear relationship between 
some plaintext bits and some bits of the string produced 
in the last round (before the last substitution)?
• If yes, then some bits occur with nonuniform 

probability
• By looking at a large enough number of plaintexts, 

can determine the most likely key for the last round



Differential Cryptanalysis
• Usually a chosen-plaintext attack

• Aim: find some bits of the key

• Basic idea: try to find out how differences in the inputs 
affect differences in the output
• Many variations; usually, difference = ⊕

• For a chosen specific difference in the inputs, can you find 
an expected difference for some bits in the string 
produced before the last substitution is applied?
• If yes, then some bits occur with nonuniform probability
• By looking at a large enough number of pairs of 

plaintexts (x1, x2) with x1 ⊕ x2 = chosen difference, can 

determine most likely key for last round



DES
• “Data Encryption Standard”

• Developed by IBM, from Lucifer
• Adopted as a standard for “unclassified” data: 1977

• Form of iterated cipher called a Feistel cipher
• At each round, string to be encrypted is divided equally 

into L and R
• Round function g takes Li-1Ri-1 and Ki, and returns a new 

string LiRi given by:       Li = Ri-1

                  Ri = Li-1 ⊕ f (Ri-1, Ki)

• Note that f need not be invertible!
• To decrypt:   Ri-1 = Li

             Li-1 = Ri ⊕ f (Li, Ki)



DES
• DES is a 16 round Feistel cipher 
• Block length: 64 bits
• Key length: 56 bits

• To encrypt plaintext x:
1.  Apply fixed permutation IP to x to get L0R0
2. Do 16 rounds of DES
3. Apply fixed permutation IP-1 to get ciphertext

• Initial and final permutations do not affect security

• Key schedule:
• 56 bits key K produces <k1, ..., k16>, 48 bits each
• Round keys obtained by permutation of selection of bits 

from key K



DES Round
• To describe a round of DES, need to give function f

• Takes string A of 32 bits and a round key J of 48 
bits

• Computing f (A, J) :

1.  Expand A to 48 bits via fixed expansion E(A)
2. Compute E(A) ⊕ J = B0B1...B8 (each Bi 6 bits)

3. Use 8 fixed S-boxes S1, ..., S8, each {0,1}6 → {0,1}4
 Get Ci = Si (Bi)

4. Set C = C1C2...C8 of length 32 bits
5. Apply fixed permutation P to C



Comments on DES

• Key space is too small
• Can build specialized hardware to do automatic 

search
• Known-plaintext attack

• Differential and linear cryptanalysis are difficult
• Need 243 plaintexts for linear cryptanalysis
• S-boxes resilient to differential cryptanalysis



AES

• “Advanced Encryption Standard”
• Developed in Belgium (as Rijndael)
• Adopted in 2001 as a new American standard

• Iterated cipher
• Block length: 128 bits
• 3 allowed key lengths, with varying number of rounds

• 128 bits (N=10)
• 192 bits (N=12)
• 256 bits (N=14)



High-Level View of AES
• To encrypt plaintext x with key schedule (k0, ..., kN):

1.  Initialize STATE to x and add (⊕) round key k0

2. For first N-1 rounds:
a.  Substitute using S-box
b. Permutation SHIFT-ROWS
c.  Substitution MIX-COLUMNS
d.  Add (⊕) round key ki

3. Substitute using S-Box, SHIFT-ROWS, add kN

4. Ciphertext is resulting STATE

• (Next slide describes the terms)



AES Operations

• STATE is a 4x4 array of bytes (= 8 bits)
• Split 128 bits into 16 bytes
• Arrange first 4 bytes into first column, then second, 

then third, then fourth

• S-box: apply fixed substitution {0,1}8 → {0,1}8 to each cell

• SHIFT-ROWS: shift second row of STATE one cell to the 
left, third row of STATE two cells to the left, and fourth 
row of STATE three cells to the left

• MIX-COLUMNS: multiply fixed matrix with each column



AES Key Schedule
• For N=10, 128 bits key

• 16 bytes: k[0], ..., k[15]
• Algorithm is word-oriented (word = 4 bytes = 32 bits)
• A round key is 128 bits ( = 4 words)
• Key schedule produces 44 words ( = 11 round keys)

• w[0], w[1], ..., w[43]

• w[0] = <k[0], ..., k[3]>
• w[1] = <k[4], ..., k[7]>
• w[2] = <k[8], ..., k[11]>
• w[3] = <k[12], ..., k[15]>
• w[i] = w[i-4] ⊕ w[i-1]

• Except at i multiples of 4 (more complex; see book)



Modes of Operation
• How to use block ciphers when plaintext is more than 

block length

• ECB (Electronic Codebook Mode):

x1 x2

y2

ek

y1

ek



Modes of Operation
• CFB (Cipher Feedback Mode):

x1 x2

y2

ek

y1

ek

y0=IV

+ +



Modes of Operation
• CBC (Cipher Block Chaining):

x1 x2

y2

ek

y1

ek

y0=IV

+ +



Modes of Operation
• OFB (Output Feedback Mode)

x1 x2

y2

ek

y1

ekz0=IV + +z1 z2


