Block Ciphers

CSG 252 Lecture 3

September 30, 2008

Riccardo Pucella

Product Ciphers

- A way to combine cryptosystems
- For simplicity, assume endomorphic cryptosystems
 - Where C=P
- $S_1 = (P, P, K_1, E_1, D_1)$
- $S_2 = (P, P, K_2, E_2, D_2)$
- Product cryptosystem S1×S2 is defined to be (P, P, K1×K2, E, D)

where

$$e_{(k_1,k_2)}(x) = e_{k_2}(e_{k_1}(x))$$

 $d_{(k_1,k_2)}(y) = d_{k_1}(d_{k_2}(y))$

Product Ciphers

- If Pr1 and Pr2 are probability distributions over the keys of S1 and S2 (resp.)
 - Take Pr on $S_1 \times S_2$ to be $Pr(\langle k_1, k_2 \rangle) = Pr_1(k_1)Pr_2(k_2)$
 - That is, keys are chosen independently
- Some cryptosystems commute, $S_1 \times S_2 = S_2 \times S_1$
 - Not all cryptosystems commute, but some do
- Some cryptosystems can be decomposed into $S_1 \times S_2$
 - Need key probabilities to match too
 - Affine cipher can be decomposed into S×M=M×S

Product Ciphers

- A cryptosystem is idempotent if S×S=S
 - Again, key probabilities must agree
 - E.g. shift cipher, substitution cipher, Vigenère cipher...
- An idempotent cryptosystem does not gain additional security by iterating it
- But iterating a nonidempotent cryptosystem does!

A Nonidempotent Cryptosystem

- Fix m > 1
- Let S_{sub} a substitution cipher over $(Z_{26})^m$
- Let S_{perm} be the permutation cipher:

•
$$C = P = (Z_{26})^m$$

- $K = \{ \pi \mid \pi \text{ a permutation } \{1, \dots, m\} \rightarrow \{1, \dots, m\} \}$
- e_{π} (<×₁, ..., ×_m>) = <×_{π (1)}, ..., ×_{π (m)>}
- d_{π} (<y₁, ..., y_m>) = <y_{\eta}(1), ..., y_{\eta}(m)>, where $\eta = \pi^{-1}$
- \bullet Theorem: S_{sub} \times S_{perm} is not idempotent

Iterated Ciphers

- A form of product ciphers
- Idea: given S a cryptosystem, an iterated cipher is S×S×...×S
 - N = number of iterations (= rounds)
 - A key is of the form $\langle k_1, ..., k_N \rangle$
 - Only useful if S is not idempotent
- Generally, the key is derived from an initial key K
 - K is used to derive $k_1, ..., k_N = \text{key schedule}$
 - Derivation is via a fixed and known algorithm

Iterated Ciphers

- Iterated ciphers are often described using a function $g: P \times K \rightarrow C$
 - g is the round function
 - \bullet g (w, k) gives the encryption of w using key k
- To encrypt x using key schedule $\langle k_1, ..., k_N \rangle$:

$$w_{0} \leftarrow x$$

$$w_{1} \leftarrow g(w_{0}, k_{1})$$

$$w_{2} \leftarrow g(w_{1}, k_{2})$$
...
$$w_{N} \leftarrow g(w_{N-1}, k_{N})$$

$$y \leftarrow w_{N}$$

Iterated Ciphers

- To decrypt, require g to be invertible when key argument is fixed
 - There exists g^{-1} such that $g^{-1}(g(w, k), k) = w$
 - g injective in its first argument
- To decrypt cipher y using key schedule $\langle k_1, ..., k_N \rangle$ $w_N \leftarrow y$ $w_{N-1} \leftarrow g^{-1}(w_N, k_N)$ $w_{N-2} \leftarrow g^{-1}(w_{N-1}, k_{N-1})$... $w_0 \leftarrow g^{-1}(w_1, k_1)$ $x \leftarrow w_0$

Substitution-Permutation Networks

- A form of iterated cipher
 - Foundation for DES and AES
- Plaintext/ciphertext: binary vectors of length l×m
 - (Z₂)^{lm}
- Substitution $\pi_s : (Z_2)^l \rightarrow (Z_2)^l$
 - Replace l bits by new l bits
 - Often called an S-box
 - Creates confusion
- Permutation $\pi_P : (Z_2)^{lm} \rightarrow (Z_2)^{lm}$
 - Reorder Im bits
 - Creates diffusion

Substitution-Permutation Networks

- N rounds
- Assume a key schedule for key $k = \langle k_1, ..., k_{N+1} \rangle$
 - Don't care how it is produced
 - Round keys have length l×m
- Write string x of length $l \times m$ as $x_{<1>} \parallel ... \parallel x_{<m>}$
 - Where $x_{\langle i \rangle} = \langle x_{(i-1)l+1}, ..., x_{il} \rangle$ of length l
- At each round but the last:

 Add round key bits to x
 Perform π_S substitution to each x_{<i>}

 Apply permutation π_P to result
- Permutation not applied on the last round
 - Allows the "same" algorithm to be used for decryption

Substitution-Permutation Networks

• Algorithmically (with key schedule $\langle k_1, ..., k_{N+1} \rangle$):

```
w_0 \leftarrow x
for r \leftarrow 1 to N-1
       u^r \leftarrow w_{r-1} \oplus k_r
       for i \leftarrow 1 to m
             v_{i}^{r} \leftarrow \pi_{s} (u_{i}^{r})
       W_r \leftarrow \langle V_{\pi P(1)}^r, ..., V_{\pi P(1 \times m)}^r \rangle
u^{N} \leftarrow w_{N-1} \oplus k_{N}
for i \leftarrow 1 to m
      v^{N}_{ci} \leftarrow \pi_{S} (u^{N}_{ci})
\mathbf{y} \leftarrow \mathbf{v}^{\mathsf{N}} \oplus \mathbf{k}_{\mathsf{N+1}}
```

Example

- Stinson, Example 3.1
- l = m = N = 4
 - So plaintexts are 16 bits strings
- Fixed π_s that substitutes four bits into four bits
 - Table: E,4,D,1,2,F,B,8,3,A,6,C,5,9,0,7 (in hexadecimal!)
- Fixed π_P that permutes 16 bits
 - Perm: 1,5,9,13,2,6,10,14,3,7,11,15,4,8,12,16
- Key schedule:
 - Initial key: 32 bits key K
 - Round r key: 16 bits of K from positions 1, 5, 9, 13

Comments

- We could use different S-boxes at each round
- Example not very secure
 - Key space too small: 2^{32}
- Could improve:
 - Larger key size
 - Larger block length
 - More rounds
 - Larger S-boxes

Linear Cryptanalysis

- Known-plaintext attack
 - Aim: find some bits of the key
- Basic idea: Try to find a linear approximation to the action of a cipher
- Can you find a (probabilistic) linear relationship between some plaintext bits and some bits of the string produced in the last round (before the last substitution)?
 - If yes, then some bits occur with nonuniform probability
 - By looking at a large enough number of plaintexts, can determine the most likely key for the last round

Differential Cryptanalysis

- Usually a chosen-plaintext attack
 - Aim: find some bits of the key
- Basic idea: try to find out how differences in the inputs affect differences in the output
 - Many variations; usually, difference = \oplus
- For a chosen specific difference in the inputs, can you find an expected difference for some bits in the string produced before the last substitution is applied?
 - If yes, then some bits occur with nonuniform probability
 - By looking at a large enough number of pairs of plaintexts (x_1 , x_2) with $x_1 \oplus x_2$ = chosen difference, can

determine most likely key for last round

DES

- "Data Encryption Standard"
 - Developed by IBM, from Lucifer
 - Adopted as a standard for "unclassified" data: 1977
- Form of iterated cipher called a Feistel cipher
- At each round, string to be encrypted is divided equally into L and R
- Round function g takes $L_{i-1}R_{i-1}$ and K_i , and returns a new string L_iR_i given by: $L_i = R_{i-1}$ $R_i = L_{i-1} \oplus f(R_{i-1}, K_i)$
- Note that f need not be invertible!

• To decrypt:
$$R_{i-1} = L_i$$

 $L_{i-1} = R_i \oplus f(L_i, K_i)$

DES

- DES is a 16 round Feistel cipher
- Block length: 64 bits
- Key length: 56 bits
- To encrypt plaintext x:
 1. Apply fixed permutation IP to x to get L₀R₀
 - 2. Do 16 rounds of DES
 - 3. Apply fixed permutation IP^{-1} to get ciphertext
 - Initial and final permutations do not affect security
 - Key schedule:
 - 56 bits key K produces <k1, ..., k16>, 48 bits each
 - Round keys obtained by permutation of selection of bits from key K

DES Round

• To describe a round of DES, need to give function f

- Takes string A of 32 bits and a round key J of 48 bits
- Computing f (A, J) :
 - 1. Expand A to 48 bits via fixed expansion E(A)
 - 2. Compute E(A) \oplus J = B₀B₁...B₈ (each B_i 6 bits)
 - 3. Use 8 fixed S-boxes S₁, ..., S₈, each $\{0,1\}^6 \rightarrow \{0,1\}^4$ Get C_i = S_i (B_i)
 - 4. Set $C = C_1C_2...C_8$ of length 32 bits
 - 5. Apply fixed permutation P to C

Comments on DES

- Key space is too small
 - Can build specialized hardware to do automatic search
 - Known-plaintext attack
- Differential and linear cryptanalysis are difficult
 Need 2⁴³ plaintexts for linear cryptanalysis
 - S-boxes resilient to differential cryptanalysis

AES

- "Advanced Encryption Standard"
 - Developed in Belgium (as Rijndael)
 - Adopted in 2001 as a new American standard
- Iterated cipher
- Block length: 128 bits
- 3 allowed key lengths, with varying number of rounds
 - 128 bits (N=10)
 - 192 bits (N=12)
 - 256 bits (N=14)

High-Level View of AES

- To encrypt plaintext x with key schedule $(k_0, ..., k_N)$:
 - 1. Initialize STATE to x and add (\oplus) round key k_0
 - 2. For first N-1 rounds:
 - a. Substitute using S-box
 - b. Permutation SHIFT-ROWS
 - c. Substitution MIX-COLUMNS
 - d. Add (\oplus) round key k_i
 - 3. Substitute using S-Box, SHIFT-ROWS, add k_N
 - 4. Ciphertext is resulting STATE
- (Next slide describes the terms)

AES Operations

- STATE is a 4x4 array of bytes (= 8 bits)
 - Split 128 bits into 16 bytes
 - Arrange first 4 bytes into first column, then second, then third, then fourth
- S-box: apply fixed substitution $\{0,1\}^8 \rightarrow \{0,1\}^8$ to each cell
- SHIFT-ROWS: shift second row of STATE one cell to the left, third row of STATE two cells to the left, and fourth row of STATE three cells to the left
- MIX-COLUMNS: multiply fixed matrix with each column

AES Key Schedule

- For N=10, 128 bits key
 - 16 bytes: k[0], ..., k[15]
- Algorithm is word-oriented (word = 4 bytes = 32 bits)
- A round key is 128 bits (= 4 words)
- Key schedule produces 44 words (= 11 round keys)
 w[0], w[1], ..., w[43]
- w[O] = <k[O], ..., k[3]>
- w[1] = <k[4], ..., k[7]>
- w[2] = <k[8], ..., k[11]>
- w[3] = <k[12], ..., k[15]>
- $w[i] = w[i-4] \oplus w[i-1]$
 - Except at i multiples of 4 (more complex; see book)

- How to use block ciphers when plaintext is more than block length
- ECB (Electronic Codebook Mode):

• CFB (Cipher Feedback Mode):

• CBC (Cipher Block Chaining):

• OFB (Output Feedback Mode)

