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Introduction
Last time, we have seen various cryptosystems, and some 
cryptanalyses
How do you ascertain the security of a cryptosystem?

Some reasonable ideas:
Computational Security: best alg takes a long time

No one knows how to get that (impossible?)
Can be done against specific attacks (brute-force 
search)

Provable Security: reduce the security of a 
cryptosystem to a problem believed (or known) to be 
hard
Unconditional Security: Cryptosystem cannot be broken 
even with infinite computation power



Review of Probability Theory

Security generally expressed in terms of probability

Because an attacker can always guess the key!

This is true of any cryptosystem, and unavoidable

We only need discrete probabilities for now



Probability Distributions
Probability space: (Ω, Pr)

Ω, the sample space, is a finite set of possible 
states (or possible worlds or possible outcomes)
Pr is a function P(Ω) → [0,1] such that

Pr(Ω) = 1
Pr(∅) = 0

Pr(A∪B) = Pr(A) + Pr(B)   if A∩B=∅
Pr is called a probability distribution, a probability 
measure, or just a probability

Because of additivity, Pr determined by Pr({a}) ∀a



Examples

Single die:
Ω = {1,2,3,4,5,6}
Pr ({4}) = 1/6
Pr ({1,3,5}) = 3/6 = 1/2

Pair of dice:
Ω = {(1,1),(1,2),(1,3),(1,4),...,(6,5),(6,6)}
Pr ({(1,1)}) = 1/36
Pr ({(1,a) ∣a=1,2,3,4}) = 4/36 = 1/9



Joint Probabilities

Suppose (Ω1, Pr1) is a probability space

Suppose (Ω2, Pr2) is a probability space

Can create the joint probability space (Ω1×Ω2,Pr) by 
taking:

Pr({a,b}) = Pr1({a})Pr2({b})

Extending by additivity



Conditional Probability

Pr (A∣B) = Pr(A∩B) / Pr(B)
Only defined if Pr(B)>0

More easily understood with a picture...

Bayes’ Theorem: Pr (B | A) = Pr (A∣B) Pr(B) / Pr(A)



Random Variables
A random variable is a function from states to some set of values
Given probability space and a random variable X, the probability 
that the random variable X takes value x is:

                         Pr ( {w∣X(w)=x} )

This is often written Pr(X=x) or Pr[x]   (YUCK)

The probability space is often left implicit

Conditional probabilities:
    Pr (X=x∣Y=y) = Pr ({w∣X(w)=x}∣{w∣Y(w)=y})

X and Y are independent if P(X=x ∩ Y=y) = Pr(X=x) Pr(Y=y) ∀x,y



Application to Cryptography

Suppose a probability space (Ω, Pr) with:
Random variable K (=key)
Random variable P (=plaintext)
K and P are independent random variables

Simple example: states are (key, plaintext) pairs

Key probability is Pr(K=k)

Plaintext probability is Pr(P=x)



Ciphertext Probability

This induces a probability over ciphertexts:

Can compute conditional probabilities:

Pr(C = y) =
∑

x,k•ek(x)=y

Pr(P = x)Pr(K = k)

Pr(C = y ∩ P = x) = Pr(P = x)
∑

k•ek(x)=y

Pr(K = k)

Pr(P = x | C = y) =
Pr(P = x)

∑
k•ek(x)=y Pr(K = k)

∑
x′,k•ek(x′)=y Pr(P = x′)Pr(K = k)

Pr(C = y | P = x) =
∑

k•ek(x)=y

Pr(K = k)



Perfect Secrecy

We say a cryptosystem has perfect secrecy if

      Pr (P=x | C=y) = Pr (P=x)   for all x,y

The probability that the plaintext is x given that 
you have observed ciphertext y is the same as the 
probability that the plaintext is x (without seeing 
the ciphertext)

Depends on key probability and plaintext probability



Characterizing Perfect Secrecy
Theorem: The shift cipher, where all keys have 
probability 1/26, has perfect secrecy if we use the 
key only once, for any plaintext probability. 

Can we characterize those cryptosystems with perfect 
secrecy?

Theorem: Let (P,C,K,E,D) be a cryptosystem with |K| = 
|P| = |C|.  This cryptosystem has perfect secrecy if and 
only if all keys have the same probability 1/|K| and 

             ∀x∈P ∀y∈C ∃k∈K ● ek(x) = y



Vernam Cipher

Also know as the one-time pad

P = C = K = (Z2)n
Strings of bits of length n

If K=(k1, ..., kn):
eK (x1, ..., xn) = (x1+k1 (mod 2), ..., xn+kn (mod 2))
dK (x1, ..., xn) = (x1-k1 (mod 2), ..., xn-kn (mod 2))

To encrypt a string of length N, choose a one-time 
pad of length N



Conclusions
If ciphertexts are short (same length as key), can get 
perfect security

Approach still used for very sensitive data 
(embassies, military, etc)

But keys get very long for long messages
And there is the whole key distribution problem

Modern cryptosystems: one key used to encrypt long 
plaintext (by breaking it into pieces)

We will see more of these next time

Need to be able to reason about reusing keys



10 minutes break



A Detour: Entropy
Entropy: measure of uncertainty (in bits) introduced by 
Shannon in 1948 

Foundation of Information Theory

Intuition
Suppose a random variable that takes value {1,...,n} with 
some nonzero probability
Consider the string of values generated by that 
probability distribution
What is the most efficient way (in number of bits) to 
encode every value to minimize how many bits it take to 
encode a random string?

Example: {1,...,8}, where 8 is much more likely than others



Definition of Entropy
Let random variable take values in finite set V

Weighted average of -log2 Pr (X=v)

Theorem: Suppose X is a random variable taking n 
values with nonzero probability, then

                     H(X) ≤ log2 (n)

When do we have equality?

H(X) = −
∑

v∈V

Pr(X = v) log2 Pr(X = v)



Huffman Encoding
Algorithm to get a {0,1} encoding that takes less than 
H(X)+1 bits on average

1. Start with a table of letter probabilities
2.Create a list of trees, initially all trees with only a letter 

and associated probability
3.Iteratively:

a.Pick the two trees T1, T2 with smallest probabilities 
from the list

b.Create a small tree with edge 0 leading to T1 and edge 
1 leading to T2

c. Add that tree back to the list, with probability the sum 
of the original probabilities

4.Stop when you get a single tree giving the encoding



Conditional Entropy
Let X and Y be random variables

Fix a value y of Y
Define the random variable X|y such that
   Pr (X|y = x) = Pr (X=x | Y=y)

Conditional entropy, written H(X|Y):

Intuition: average amount of information about X that 
remains after observing Y

H(X | y) = −
∑

v∈V

Pr(X = v | Y = y) log2 Pr(X = v | Y = y)

H(X | Y ) =
∑

y

Pr(Y = y)H(X | y)



Application to Cryptography

Key equivocation H(K∣C): amount of uncertainty of 
the key that remains after observing the ciphertext

Theorem:   H(K∣C) = H(K) + H(P) - H(C)

A spurious key is a possible key, but incorrect

E.g., shift cipher, with ciphertext WNAJW
Possible keys: k=5 (RIVER) or k=22 (ARENA)

Many spurious keys            Good!



How Many Spurious Keys?

Question: how long of a message can we permit 
before the number of spurious keys is 0? 

That is, before the only key that is possible is the 
right one?

This depends on the underlying language in which 
plaintexts are taken

Cf: cryptanalysis, where we took advantage that not 
all letters have equal probability in English messages



Entropy of a Language
HL = number of information bits per letter in language L

Example:
If all letters have the same probability, a first 
approximation would be 4.7
For English, based on probabilities of plaintexts 
(letters), a first approximation is 4.19
For pairs of letters? Triplets of letters? ...

Entropy of L:

Redundancy of L:

HL = lim
n→∞

H(Pn)
n

RL = 1− HL

log2 |P |



Unicity Distance
Theorem: Suppose (P,C,K,E,D) is a cryptosystem with |C| = |P| 
and keys are chosen equiprobably, and let L be the underlying 
language. Given a ciphertext of length n (sufficiently large), the 
expected number of spurious keys sn satisfies

The unicity distance of a cryptosystem is the value n0 after 
which the number expected number of spurious keys is 0.

Average amount of ciphertext required for an adversary to 
be able to compute the key (given enough time)

Substitution cipher: n0 = 25
So have a chance to recover the key if encrypted message 
is longer than 25 characters

sn ≥
|K|

|P |nRL
− 1


