Shannon's Theory of Secure Communication

CSG 252 Lecture 2

September 23, 2006
Riccardo Pucella

Introduction

- Last time, we have seen various cryptosystems, and some cryptanalyses
- How do you ascertain the security of a cryptosystem?
- Some reasonable ideas:
- Computational Security: best alg takes a long time
- No one knows how to get that (impossible?)
- Can be done against specific attacks (brute-force search)
- Provable Security: reduce the security of a cryptosystem to a problem believed (or known) to be hard
- Unconditional Security: Cryptosystem cannot be broken even with infinite computation power

Review of Probability Theory

- Security generally expressed in terms of probability
- Because an attacker can always guess the key!
- This is true of any cryptosystem, and unavoidable
- We only need discrete probabilities for now

Probability Distributions

- Probability space: ($\Omega, \operatorname{Pr}$)
- Ω, the sample space, is a finite set of possible states (or possible worlds or possible outcomes)
- Pr is a function $\mathrm{P}(\Omega) \rightarrow[0,1]$ such that
- $\operatorname{Pr}(\Omega)=1$
- $\operatorname{Pr}(\varnothing)=0$
- $\operatorname{Pr}(A \cup B)=\operatorname{Pr}(A)+\operatorname{Pr}(B) \quad$ if $A \cap B=\varnothing$
- Pr is called a probability distribution, a probability measure, or just a probability
- Because of additivity, Pr determined by $\operatorname{Pr}(\{a\}) \forall a$

Examples

- Single die:
- $\Omega=\{1,2,3,4,5,6\}$
- $\operatorname{Pr}(\{4\})=1 / 6$
- $\operatorname{Pr}(\{1,3,5\})=3 / 6=1 / 2$
- Pair of dice:
- $\Omega=\{(1,1),(1,2),(1,3),(1,4), \ldots,(6,5),(6,6)\}$
- $\operatorname{Pr}(\{(1,1)\})=1 / 36$
- $\operatorname{Pr}(\{(1, a) \mid a=1,2,3,4\})=4 / 36=1 / 9$

Joint Probabilities

- Suppose $\left(\Omega_{1}, \operatorname{Pr}_{1}\right)$ is a probability space
- Suppose $\left(\Omega_{2}, \operatorname{Pr}_{2}\right)$ is a probability space
- Can create the joint probability space ($\left.\Omega_{1} \times \Omega_{2}, \operatorname{Pr}\right)$ by taking:
- $\operatorname{Pr}(\{a, b\})=\operatorname{Pr}_{1}(\{a\}) \operatorname{Pr}_{2}(\{b\})$
- Extending by additivity

Conditional Probability

- $\operatorname{Pr}(A \mid B)=\operatorname{Pr}(A \cap B) / \operatorname{Pr}(B)$
- Only defined if $\operatorname{Pr}(B)>0$
- More easily understood with a picture...

Bayes' Theorem: $\operatorname{Pr}(B \mid A)=\operatorname{Pr}(A \mid B) \operatorname{Pr}(B) / \operatorname{Pr}(A)$

Random Variables

- A random variable is a function from states to some set of values
- Given probability space and a random variable X, the probability that the random variable X takes value x is:

$$
\operatorname{Pr}(\{w \mid X(w)=x\})
$$

- This is often written $\operatorname{Pr}(X=x)$ or $\operatorname{Pr}[x] \quad(Y U C K)$
- The probability space is often left implicit
- Conditional probabilities:

$$
\operatorname{Pr}(X=x \mid Y=y)=\operatorname{Pr}(\{w \mid X(w)=x\} \mid\{w \mid Y(w)=y\})
$$

- X and Y are independent if $P(X=x \cap Y=y)=\operatorname{Pr}(X=x) \operatorname{Pr}(Y=y) \forall x, y$

Application to Cryptography

- Suppose a probability space ($\Omega, \operatorname{Pr}$) with:
- Random variable K (=key)
- Random variable P (=plaintext)
- K and P are independent random variables
- Simple example: states are (key, plaintext) pairs
- Key probability is $\operatorname{Pr}(\mathrm{K}=\mathrm{k})$
- Plaintext probability is $\operatorname{Pr}(P=x)$

Ciphertext Probability

- This induces a probability over ciphertexts:

$$
\operatorname{Pr}(C=y)=\sum_{x, k \bullet e_{k}(x)=y} \operatorname{Pr}(P=x) \operatorname{Pr}(K=k)
$$

- Can compute conditional probabilities:

$$
\begin{aligned}
& \operatorname{Pr}(C=y \cap P=x)=\operatorname{Pr}(P=x) \sum_{k \bullet e_{k}(x)=y} \operatorname{Pr}(K=k) \\
& \operatorname{Pr}(C=y \mid P=x)=\sum_{k \bullet e_{k}(x)=y} \operatorname{Pr}(K=k) \\
& \operatorname{Pr}(P=x \mid C=y)=\frac{\operatorname{Pr}(P=x) \sum_{k \bullet e_{k}(x)=y} \operatorname{Pr}(K=k)}{\sum_{x^{\prime}, k \bullet e_{k}\left(x^{\prime}\right)=y} \operatorname{Pr}\left(P=x^{\prime}\right) \operatorname{Pr}(K=k)}
\end{aligned}
$$

Perfect Secrecy

- We say a cryptosystem has perfect secrecy if

$$
\operatorname{Pr}(P=x \mid C=y)=\operatorname{Pr}(P=x) \quad \text { for all } x, y
$$

- The probability that the plaintext is x given that you have observed ciphertext y is the same as the probability that the plaintext is x (without seeing the ciphertext)
- Depends on key probability and plaintext probability

Characterizing Perfect Secrecy

Theorem: The shift cipher, where all keys have probability $1 / 26$, has perfect secrecy if we use the key only once, for any plaintext probability.

- Can we characterize those cryptosystems with perfect secrecy?

Theorem: Let (P, C, K, E, D) be a cryptosystem with $|K|=$ $|\mathrm{P}|=|C|$. This cryptosystem has perfect secrecy if and only if all keys have the same probability $1 /|\mathrm{K}|$ and

$$
\forall x \in P \quad \forall y \in C \quad \exists k \in K \bullet e_{k}(x)=y
$$

Vernam Cipher

- Also know as the one-time pad
- $P=C=K=\left(Z_{2}\right)^{n}$
- Strings of bits of length n
- If $K=\left(k_{1}, \ldots, k_{n}\right)$:
- $e_{k}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}+k_{1}(\bmod 2), \ldots, x_{n}+k_{n}(\bmod 2)\right)$
$\bullet d_{k}\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}-k_{1}(\bmod 2), \ldots, x_{n}-k_{n}(\bmod 2)\right)$
- To encrypt a string of length N, choose a one-time pad of length N

Conclusions

- If ciphertexts are short (same length as key), can get perfect security
- Approach still used for very sensitive data (embassies, military, etc)
- But keys get very long for long messages
- And there is the whole key distribution problem
- Modern cryptosystems: one key used to encrypt long plaintext (by breaking it into pieces)
- We will see more of these next time
- Need to be able to reason about reusing keys

A Detour: Entropy

- Entropy: measure of uncertainty (in bits) introduced by Shannon in 1948
- Foundation of Information Theory
- Intuition
- Suppose a random variable that takes value $\{1, \ldots, n\}$ with some nonzero probability
- Consider the string of values generated by that probability distribution
- What is the most efficient way (in number of bits) to encode every value to minimize how many bits it take to encode a random string?
- Example: $\{1, \ldots, 8\}$, where 8 is much more likely than others

Definition of Entropy

- Let random variable take values in finite set V

$$
H(X)=-\sum_{v \in V} \operatorname{Pr}(X=v) \log _{2} \operatorname{Pr}(X=v)
$$

- Weighted average of $-\log _{2} \operatorname{Pr}(X=v)$

Theorem: Suppose X is a random variable taking n values with nonzero probability, then

$$
H(X) \leq \log _{2}(n)
$$

- When do we have equality?

Huffman Encoding

Algorithm to get a $\{0,1\}$ encoding that takes less than $H(X)+1$ bits on average

1. Start with a table of letter probabilities
2. Create a list of trees, initially all trees with only a letter and associated probability
3.Iteratively:
a. Pick the two trees T_{1}, T_{2} with smallest probabilities from the list
b. Create a small tree with edge 0 leading to T_{1} and edge 1 leading to T_{2}
c. Add that tree back to the list, with probability the sum of the original probabilities
3. Stop when you get a single tree giving the encoding

Conditional Entropy

- Let X and Y be random variables
- Fix a value y of Y
- Define the random variable Xly such that

$$
\begin{gathered}
\operatorname{Pr}(\mathbf{X} \mid \mathbf{y}=\mathbf{x})=\operatorname{Pr}(\mathbf{X}=\mathbf{x} \mid \mathbf{Y}=\mathbf{y}) \\
H(X \mid y)=-\sum_{v \in V} \operatorname{Pr}(X=v \mid Y=y) \log _{2} \operatorname{Pr}(X=v \mid Y=y)
\end{gathered}
$$

- Conditional entropy, written $\mathrm{H}(\mathrm{X} \mid \mathrm{Y})$:

$$
H(X \mid Y)=\sum_{y} \operatorname{Pr}(Y=y) H(X \mid y)
$$

- Intuition: average amount of information about X that remains after observing Y

Application to Cryptography

- Key equivocation $H(K \mid C)$: amount of uncertainty of the key that remains after observing the ciphertext

Theorem: $H(K \mid C)=H(K)+H(P)-H(C)$

- A spurious key is a possible key, but incorrect
- E.g., shift cipher, with ciphertext WNAJW
- Possible keys: $k=5$ (RIVER) or $k=22$ (ARENA)
- Many spurious keys ---> Good!

How Many Spurious Keys?

- Question: how long of a message can we permit before the number of spurious keys is 0 ?
- That is, before the only key that is possible is the right one?
- This depends on the underlying language in which plaintexts are taken
- Cf: cryptanalysis, where we took advantage that not all letters have equal probability in English messages

Entropy of a Language

- $H_{L}=$ number of information bits per letter in language L
- Example:
- If all letters have the same probability, a first approximation would be 4.7
- For English, based on probabilities of plaintexts (letters), a first approximation is 4.19
- For pairs of letters? Triplets of letters? ...
- Entropy of L:

$$
H_{L}=\lim _{n \rightarrow \infty} \frac{H\left(P^{n}\right)}{n}
$$

- Redundancy of L :

$$
R_{L}=1-\frac{H_{L}}{\log _{2}|P|}
$$

Unicity Distance

Theorem: Suppose (P, C, K, E, D) is a cryptosystem with $|C|=|P|$ and keys are chosen equiprobably, and let L be the underlying language. Given a ciphertext of length n (sufficiently large), the expected number of spurious keys s_{n} satisfies

- The unicity distance of a cryptosystem is the value n_{0} after which the number expected number of spurious keys is 0 .
- Average amount of ciphertext required for an adversary to be able to compute the key (given enough time)
- Substitution cipher: $n_{0}=25$
- So have a chance to recover the key if encrypted message is longer than 25 characters

