Secure Multiparty Computations

CSG 252 Lecture 11
December 9, 2008
Riccardo Pucella

Oblivious Transfer

Suppose Alice has two messages mO and ml

- Suppose Bob has a bit b
- Bob wants to have mb

Constraints:

- Bob does not want Alice to know b
- Or, equivalently, which mb he wants
- Alice does not want Bob to know both m0 and ml

1-2 Oblivious Transfer

(The RSA-based version)
Alice generates an RSA key: N, public e, private d

A N, e, x_{0}, x_{1}
mss m_{0}, m_{1}
random x_{0}, x_{1}

$t_{0}=m_{0}+\left(q-x_{0}\right)^{d}$
$t_{1}=m_{1}+\left(q-x_{1}\right)^{d}$
bit b
random k
$q=k^{e}+x_{b}(\bmod N)$
Bob computes $t_{b}-k$
$\left(=m_{b}\right)$

1-N Oblivious Transfer

- Alice has N messages
- Bob has an index i
- Bob wants to receive i-th message without Alice learning i
- Alice wants Bob to receive only one message

Related to private information retrieval

- Added database's privacy requirement

K-N Oblivious Transfer

- Alice has N messages
- Bob wants K of those messages without Alice learning which
- Alice wants Bob to receive only K messages

Two possibilities:

- messages requested simultaneously (non-adaptive)
- messages requested sequentially (adaptively)
- can depend on previous requests

The Millionaires Problem

(Andrew Yao, 1982)

Alice and Bob are both millionaires

- Alice has I million dollars
- Bob has J million dollars
- Alice and Bob both want to know who's richer
- But they don't want the other to know how much money they have
- For simplicity, assume $1<=\mathrm{I}, \mathrm{J}<=4$

The Protocol

(The RSA-based version)
Alice generates an RSA key: N, public e, private d
A

I

M/2-bits random prime P

$$
N, e
$$

The Prot d version $) \quad Z_{1}=(C-J+1)^{d}(\bmod P)$

(The RSA-based version)
Alice generates an RSA k $\quad \begin{aligned} & Z_{1}=(C-J+1)^{d}(\bmod P) \\ & Z_{2}=(C-J+2)^{d}(\bmod P)\end{aligned}$
$Z_{3}=(C-J+3)^{d}(\bmod P)$
$Z_{4}=(C-J+4)^{d}(\bmod P)$
I

M/2-bits random prime P

Secure Multiparty Computation

Given a publicly known function F of N inputs and producing N outputs

- $F\left(x_{1}, \ldots, x_{n}\right)=\left(y_{1}, \ldots, y_{n}\right)$

Suppose N parties, each party i with a private value a_{i}

- Goal: compute $F\left(a_{1}, \ldots, a_{n}\right)=\left(r_{1}, \ldots, r_{n}\right)$
- Each party i wants to know r_{i}
- No party want others to learn their private value

Secure Multiparty Computation

Oblivious Transfer as a secure multiparty computation:

- Function $F\left(\left\langle m_{0}, m_{1}\right\rangle, b\right)=\left(\right.$ nil, $\left.m_{b}\right)$
- Alice has $\left\langle m_{0}, m_{1}\right\rangle$, Bob has b
- Bob wants m_{b} (don't care about Alice)

Millionaires Problem as a secure multiparty computation:

- Function $F(I, J)=($ Alice,Alice $)$ if $I>=J$

$$
=(B o b, B o b) \text { if } I<J
$$

- Alice has I, Bob has J
- Alice and Bob want to know who's richer

