Oblivious Transfer

Suppose Alice has two messages \(m_0 \) and \(m_1 \)

- Suppose Bob has a bit \(b \)
- Bob wants to have \(m_b \)

Constraints:

- Bob does not want Alice to know \(b \)
 - Or, equivalently, which \(m_b \) he wants
- Alice does not want Bob to know both \(m_0 \) and \(m_1 \)
1-2 Oblivious Transfer

(The RSA-based version)

Alice generates an RSA key: N, public e, private d

- **A**
 - msgs m_0, m_1
 - random x_0, x_1
 - $t_0 = m_0 + (q-x_0)^d$
 - $t_1 = m_1 + (q-x_1)^d$

- **B**
 - bit b
 - random k
 - $q = k^e + x_b \pmod{N}$
 - $t_b - k$
 - $t_b - k = m_b$

$q = k^e + x_b \pmod{N}$
1-N Oblivious Transfer

- Alice has N messages
- Bob has an index i
- Bob wants to receive i-th message without Alice learning i
- Alice wants Bob to receive only one message

Related to private information retrieval

- Added database’s privacy requirement
K-N Oblivious Transfer

- Alice has N messages
- Bob wants K of those messages without Alice learning which
- Alice wants Bob to receive only K messages

Two possibilities:
- messages requested simultaneously (non-adaptive)
- messages requested sequentially (adaptively)
 - can depend on previous requests
The Millionaires Problem

(Andrew Yao, 1982)

Alice and Bob are both millionaires

- Alice has I million dollars
- Bob has J million dollars
- Alice and Bob both want to know who's richer
- But they don't want the other to know how much money they have
- For simplicity, assume $1 \leq I, J \leq 4$
The Protocol

(The RSA-based version)

Alice generates an RSA key: N, public e, private d

\(N, e \)

Bob receives \(P, R_1, \ldots, R_4 \):

If \(R_J = x \) mod \(P \)

then \(I \geq J \) (o/w \(I < J \))
Alice generates an RSA key: N, public e, private d

Bob receives $P, R_1, ... , R_4$:

If $R_J = x \mod P$, then $I \geq J$ (o/w $I < J$)

$Z_1 = (C - J + 1)^d \mod P$
$Z_2 = (C - J + 2)^d \mod P$
$Z_3 = (C - J + 3)^d \mod P$
$Z_4 = (C - J + 4)^d \mod P$
Given a publicly known function F of N inputs and producing N outputs:

- $F(x_1, \ldots, x_n) = (y_1, \ldots, y_n)$

Suppose N parties, each party i with a private value a_i:

- Goal: compute $F(a_1, \ldots, a_n) = (r_1, \ldots, r_n)$
- Each party i wants to know r_i
- No party want others to learn their private value
Secure Multiparty Computation

Oblivious Transfer as a secure multiparty computation:
• Function $F(<m_0,m_1>,b) = (\text{nil},m_b)$
 • Alice has $<m_0,m_1>$, Bob has b
 • Bob wants m_b (don’t care about Alice)

Millionaires Problem as a secure multiparty computation:
• Function $F(I,J) = (\text{Alice},\text{Alice})$ if $I \geq J$
 $$= (\text{Bob},\text{Bob})$$ if $I < J$
 • Alice has I, Bob has J
 • Alice and Bob want to know who’s richer