Zero Knowledge Protocols

CSG 252 Lecture 10

December 2, 2008
Riccardo Pucella

Mise en Situation

Suppose Alice knows a secret S

- You want to check that Alice knows the secret
- How can Alice convince you she does?

Mise en Situation

Suppose Alice knows a secret S

- You want to check that Alice knows the secret
- How can Alice convince you she does?

... without actually revealing S!

Example 1: The Magic Cave

Consider a cave looking as follows: [Picture missing]

- Alice knows the magic word to open the door

Example 1: The Magic Cave

Consider a cave looking as follows: [Picture missing]

- Alice knows the magic word to open the door

To convince Bob that she knows the magic word

- She goes into the cave, picks a passage at random

Example 1: The Magic Cave

Consider a cave looking as follows: [Picture missing]

- Alice knows the magic word to open the door

To convince Bob that she knows the magic word

- She goes into the cave, picks a passage at random
- Bob screams to come out the left (or right) passage

Example 1: The Magic Cave

Consider a cave looking as follows: [Picture missing]

- Alice knows the magic word to open the door

To convince Bob that she knows the magic word

- She goes into the cave, picks a passage at random
- Bob screams to come out the left (or right) passage
- Alice, knowing the magic word can do it

Example 1: The Magic Cave

Consider a cave looking as follows: [Picture missing]

- Alice knows the magic word to open the door

To convince Bob that she knows the magic word

- She goes into the cave, picks a passage at random
- Bob screams to come out the left (or right) passage
- Alice, knowing the magic word can do it
- If she doesn't know it, she has 50/50 of being right

Example 1: The Magic Cave

Consider a cave looking as follows: [Picture missing]

- Alice knows the magic word to open the door

To convince Bob that she knows the magic word

- She goes into the cave, picks a passage at random
- Bob screams to come out the left (or right) passage
- Alice, knowing the magic word can do it
- If she doesn't know it, she has 50/50 of being right

Repeat until Bob is convinced

Example 2: Rubik's Cube

Bob has a scrambled Rubik's cube

- Alice knows how to unscramble that cube

Example 2: Rubik's Cube

Bob has a scrambled Rubik's cube

- Alice knows how to unscramble that cube

To convince Bob that she knows how to unscramble it

- Bob gives her the scrambled cube

Example 2: Rubik's Cube

Bob has a scrambled Rubik's cube

- Alice knows how to unscramble that cube

To convince Bob that she knows how to unscramble it

- Bob gives her the scrambled cube
- She secretly scrambles it further (remembering how)

Example 2: Rubik's Cube

Bob has a scrambled Rubik's cube

- Alice knows how to unscramble that cube

To convince Bob that she knows how to unscramble it

- Bob gives her the scrambled cube
- She secretly scrambles it further (remembering how)
- Bob asks her to either: unscramble the cube now, or restore the original scrambling

Example 2: Rubik's Cube

Bob has a scrambled Rubik's cube

- Alice knows how to unscramble that cube

To convince Bob that she knows how to unscramble it

- Bob gives her the scrambled cube
- She secretly scrambles it further (remembering how)
- Bob asks her to either: unscramble the cube now, or restore the original scrambling
- Alice can do either if she knows how to unscramble the original cube; not otherwise

Zero Knowledge Protocols

Introduced by Goldwasser, Micali, and Rackoff in 1985

- Refined and explored by Goldreich, Micali, and Wigderson in 1986

There is a constantly changing definition of zero
knowledge protocols and many papers are still coming out

- We will remain informal here

The Setup

The Prover

- has a secret
- Usually a probabilistic polynomial time (interactive) Turing machine
- Sometimes completely unconstrained

The Verifier

- Usually a probabilistic polynomial time (interactive) Turing machine

No limits on the number of rounds of communication

Properties

Completeness

- A prover who knows the secret (honest prover) can prove it with probability 1

Soundness

- The probability that a cheating prover can get away with it can be made arbitrarily small

Zero Knowledge

- If the prover knows the secret, no verifier learns anything beyond that fact

Properties

Completeness

- A prover who knows the secret (honest prover) can prove it with nrobability 1

anything beyond that fact

Applications

Zero-knowledge protocols can be used when secret knowledge too sensitive to reveal needs to be verified

- Key authentication
- PIN numbers
- Smart cards

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known
p
V

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known

Pα^{j}

V
rand $j \in[0, \lambda-1]$

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known

P α^{j}

V
rand $j \in[0, \lambda-1]$
You want to avoid 0 or 1 here (why?)

So pick $j \in\left[j_{0}, \lambda-1\right]$ where $1<j_{0}<=\lambda-1$

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known

rand $j \in[0, \lambda-1]$

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known

rand $j \in[0, \lambda-1]$

V
rand $i \in\{0,1\}$

$$
j+i k \bmod \lambda \quad j+i k \bmod \lambda
$$

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known

rand $j \in[0, \lambda-1]$ \square
$j+i k \bmod \lambda \quad j+i k \bmod \lambda$

$$
\begin{aligned}
& \alpha^{j+i k}\left(=\alpha^{j} \alpha^{i k}\right) \\
&=\alpha^{j} \beta^{i} ?
\end{aligned}
$$

Example 3: Discrete Log

P wants to convince V that $\alpha^{k}=\beta$ for some k in [0.. λ]

- α, β known

Example 4: Graph 3-Coloring

G a known graph, Prover has a (secret) 3-coloring

- Wants to convince Verifier she has one

P

Example 4: Graph 3-Coloring

G a known graph, Prover has a (secret) 3-coloring

- Wants to convince Verifier she has one

Pencrypted recoloring

Example 4: Graph 3-Coloring

Ga known graph, Prover has a (secret) 3-coloring

- Wants to convince Verifier she has one

pencrypted recoloring

Example 4: Graph 3-Coloring

G a known graph, Prover has a (secret) 3-coloring

- Wants to convince Verifier she has one

Pencrypted recoloring
keys for i and j colors
$\operatorname{color}(\mathrm{i}) \neq \operatorname{color}(\mathrm{j})$

Example 4: Graph 3-Coloring

G a known graph, Prover has a (secret) 3-coloring

- Wants to convince Verifier she has one

P encrypted recoloring rand recoloring lone key pernosil \longrightarrow ianodes of G

When you repeat the protocol (to help convince verifier) make sure you pick a different coloring every

Example 5: Hamiltonian Path

G a known graph, Prover has a (secret) Hamiltonian path

- Wants to convince Verifier she has one

P
V

Example 5: Hamiltonian Path

G a known graph, Prover has a (secret) Hamiltonian path

- Wants to convince Verifier she has one

rand
isomorphic
copy H of G
(π is the
matching)

Example 5: Hamiltonian Path

G a known graph, Prover has a (secret) Hamiltonian path

- Wants to convince Verifier she has one

P

rand
isomorphic
copy H of G
(π is the
matching)

Example 5: Hamiltonian Path

G a known graph, Prover has a (secret) Hamiltonian path

- Wants to convince Verifier she has one

P
rand
isomorphic
copy H of G
(π is the matching)

choice
requested answer
\qquad
rand \{give me π, give me Hamiltonian
path in H3
check iso or check path

Example 5. Hamiltonian Path
 Ga. Even if V knows H, it is t) Hamiltonian path hard to reconstruct π from G and H
 (Although no one knows quite
 copy H of G
 (π is the
 requested answer matching)
 rand \{give me π, give me Hamiltonian path in H3
 check iso or check path

Commitment Scheme

A key ingredient in many zero knowledge protocols

- Interesting in its own right

How do you flip a coin in real life?
(1) Bob "calls" the coin flip
(2) Alice flips the coin, and if Bob's call is correct, he wins, otherwise Alice does

Flipping a Coin Over the Phone

How do you do this over the telephone?

- Bob cannot trust Alice to reply honestly

Need commitment:

- A value of 0 or 1 is committed to by encrypting it or hashing it with a one-way function to get a "blob"
- We can verify the commitment by "unwrapping" this blob after revealing the key

Flipping a Coin Over the Phone

How do you do this over the telephone?

- Bob cannot trust Alice to reply honestly
(1) Bob "calls" the coin flip and tells Alice only a commitment to his call
(2) Alice flips the coin and reports the result
(3) Bob reveals what he committed to; if that matches
the coin result Alice reported, Bob wins

Flipping a Coin Over the Phone

Hor Alice to be able to skew the results in her favor, she must be able to understand the call hidden in Bob's commitment, so if the commitment scheme is a good one, Alice cannot affect the results.

Similarly, Bob cannot affect the result if he cannot change the value he commits to.
(3) Bob reveals what he committed to; if that matches the coin result Alice reported, Bob wins

Bit Commitment Properties

Concealment:

- Receiver cannot determine the value of the bit from the "blob"

Binding:

- Sender cannot open the "blob" as both a zero and a one

ZK from NP-Complete Problems

Given an instance of an NP-complete problem

ZK from NP-Complete Problems

Given an instance of an NP-complete problem

- Prover generates a new isomorphic instance based on the original one

ZK from NP-Complete Problems

Given an instance of an NP-complete problem

- Prover generates a new isomorphic instance based on the original one
- Prover commit the solution to the new problem to

Verifier with a commitment protocol

ZK from NP-Complete Problems

Given an instance of an NP-complete problem

- Prover generates a new isomorphic instance based on the original one
- Prover commit the solution to the new problem to Verifier with a commitment protocol
- Verifier can challenge Prover with one of the questions:
- Prove the two instances are isomorphic
- Or show me the solution to the new instance

ZK from NP-Complete Problems

Given an instance of an NP-complete problem

- Prover generates a new isomorphic instance based on the original one
- Prover commit the solution to the new problem to

Verifier with a commitment protocol

- Verifier can chall questions:
- Prove the tw
- Or show me

As usual, repeat until procedure until Verifier is satisfied.

ZK from NP-Complete Problems

Given an instance of an NP-complete problem

- Prover generates a new isomorphic instance based on the original one
- Prover commit the

Tricky bit:
Verifier with a cor Verifier should not be able to

- Verifier can challe transfer a solution back to the questions:
- Prove the two ins
- Or show me the solution ron........ Instance

Graph Isomorphism

G_{0} and G_{1} are known graphs.
Prover knows a (secret) isomorphism π between them.
P
V

Graph Isomorphism

G_{0} and G_{1} are known graphs.
Prover knows a (secret) isomorphism π between them.

Graph Isomorphism

G_{0} and G_{1} are known graphs.
Prover knows a (secret) isomorphism π between them.

P
random H and isomorphism μ between G_{0} and H

$$
\begin{gathered}
\sigma_{0}=\mu \\
\sigma_{1}=\mu \circ \pi^{-1}
\end{gathered}
$$

Graph Isomorphism

G_{0} and G_{1} are known graphs.
Prover knows a (secret) isomorphism π between them.

P

random H and isomorphism μ between G_{0} and H

$$
\begin{gathered}
\sigma_{0}=\mu \\
\sigma_{1}=\mu \circ \pi^{-1}
\end{gathered}
$$

Graph Isomorphism

G_{0} and G_{1} are known graphs.
Prover knows a (secret) isomorphism π between them.

P
random H and isomorphism μ between G_{0} and H

$$
\begin{gathered}
\sigma_{0}=\mu \\
\sigma_{1}=\mu \circ \pi^{-1}
\end{gathered}
$$

check that σ_{i} is an isomorphism between G_{i} and H

More about NPC Problems

Every NPC problem yields a zero knowledge protocol

- Assumes existence of one-way functions
- Or existence of an encryption scheme
- Basically, for commitment scheme

Variant that does not require such an assumption:

- Use multiple independent provers instead of only one, allowing the verifier to validate prover results against each others to avoid being misled.

ZK Proofs of Identity

If a private key is used as an identity, we can use a
zero-knowledge proof for identity

- Chess Master problem: When Alice is proving her identity to a malicious node, the malicious node may be proving to a third party
- Cf wormhole attacks on wireless networks

Proposed solutions:

- Accurately synchronized clocks

