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Goals of Classical Cryptography 
Alice wants to send message X to Bob

Oscar is on the wire, listening to all communications

Alice and Bob share a key K

Alice encrypts X into Y using K

Alice sends Y to Bob

Bob decrypts Y back to X using K

Want to protect message X from Oscar

Much better: protect key K from Oscar



Shift Cipher

Given a string M of letters

For simplicity, assume only capital letters of English
Remove spaces

Key k: a number between 0 and 25
To encrypt, replace every letter by the letter k places 
down the alphabet (wrapping around)
To decrypt, replace every letter by the letter k places 
up the alphabet (wrapping around)
Example: k=10, THISISSTUPID ➔ DRSCSCCDEZSN



Definition of Cryptosystem

A cryptosystem is a tuple (P,C,K,E,D) such that:

1. P is a finite set of possible plaintexts

2.C is a finite set of possible ciphertexts

3.K is a finite set of possible keys (keyspace)

4.For every k, there is an encryption function ek∈E and 
decryption function dk∈D such that dk(ek(x)) = x for all 
plaintexts x.

Encryption function assumed to be injective

Encrypting a message: 

x = x1 x2 ... xn   ➔   ek(x) = ek(x1) ek(x2) ... ek(xn)



Properties of Cryptosystems
Encryption and decryption functions can be efficiently 
computed

Given a ciphertext, it should be difficult for an 
opponent to identify the encryption key and the 
plaintext

For the last to hold, the key space must be large 
enough!

Otherwise, may be able to iterate through all keys



Shift Cipher, Revisited

P = Z26 = {0,1,2,...,25}    

Idea: A = 0, B = 1, ..., Z = 25

C = Z26

K = Z26

ek = ?

Add k, and wraparound...



Modular Arithmetic
Congruence

a, b: integers      m: positive integer
a ≡ b (mod m)  iff   m divides a-b

a congruent to b modulo m
Examples: 75 ≡ 11 (mod 8)    75 ≡ 3 (mod 8)

Given m, every integer a is congruent to a unique 
integer in {0,...,m-1}

Written a (mod m)

Remainder of a divided by m



Modular Arithmetic

Zm = { 0, 1, ..., m-1 }
Define a + b in Zm to be a + b (mod m)
Define a x b in Zm to be a x b (mod m)
Obeys most rules of arithmetic

+ commutative, associative, 0 additive identity
x commutative, associative, 1 mult. identity
+ distributes over x
Formally, Zm forms a ring

For a prime p, Zp is actually a field



Shift Cipher, Formally

P = Z26 = {0,1,2,...,25}      (where A=0, B=1,..., Z=25)

C = Z26

K = Z26

ek(x) = x + k (mod 26)

dk(y) = y - k (mod 26)

Size of the keyspace? Is this enough?



Affine Cipher
Let’s complicate the encryption function a little bit

K = Z26 x Z26     (tentatively)

ek(x) = (ax + b) mod 26,   where k=(a,b)

How do you decrypt?

Given a,b, and y, can you find x∈Z26 such that

            (ax+b) ≡ y (mod 26)?

    or equivalently:   ax ≡ y-b (mod 26)?



Affine Cipher

Theorem: ax ≡ y (mod m) has a unique solution x∈Zm iff 

            gcd(a,m)=1

In order to decrypt, need to find a unique solution 

Must choose only keys (a,b) such that gcd(a,26)=1

Let a-1 be the solution of ax = 1 (mod m)

Then a-1b is the solution of ax = b (mod m)



Affine Cipher, Formally
P = C = Z26

K = { (a,b) | a,b ∈ Z26, gcd(a,26)=1 }

e(a,b)(x) = ax + b (mod 26)

d(a,b)(y) = ? 

What is the size of the keyspace?

(Number of a’s with gcd(a,26)=1) x 26

φ(26) X 26



Substitution Cipher

P = Z26

C = Z26

K = all possible permutations of Z26

A permutation P is a bijection from Z26 to Z26

ek(x) = k(x)
dk(x) = k-1(x)

Example
Shift cipher, affine cipher

Size of keyspace?



Cryptanalysis

Kerckhoff’s Principle:

The opponent knows the cryptosystem being used 

No “security through obscurity”

Objective of an attacker

Identify secret key used to encrypt a ciphertext

Different models are considered:

Ciphertext only attack

Known plaintext attack

Chosen plaintext attack

Chosen ciphertext attack



Cryptanalysis of Substitution Cipher

Statistical cryptanalysis

Ciphertext only attack

Again, assume plaintext is English, only letters

Goal of the attacker: determine the substitution

Idea: use statistical properties of English text



Statistical Properties of English

Letter probabilities (Beker and Piper, 1982): p0, ..., p25

A: 0.082, B: 0.015, C: 0.028, ...
More useful: ordered by probabilities:

E: 0.120
T,A,O,I,N,S,H,R: [0.06, 0.09]
D,L: 0.04
C,U,M,W,F,G,Y,P,B: [0.015, 0.028]
V,K,J,X,Q,Z: < 0.01

Most common digrams: TH,HE,IN,ER,AN,RE,ED,ON,ES,ST...
Most common trigrams: THE,ING,AND,HER,ERE,ENT,...



Statistical Cryptanalysis 

General recipe:

Identify possible encryptions of E (most common English letter)

T,A,O,I,N,S,H,R: probably difficult to differentiate

Identify possible digrams starting/finishing with E (-E and E-)

Use trigrams

Find ‘THE’

Identify word boundaries



Polyalphabetic Ciphers

Previous ciphers were monoalphabetic

Each alphabetic character mapped to a unique 
alphabetic character

This makes statistical analysis easier

Obvious idea

Polyalphabetic ciphers

Encrypt multiple characters at a time



Vigenère Cipher

Let m be a positive integer (the key length)

P = C = K = Z26 x ... x Z26 = (Z26)m

For k = (k1, ..., km):

ek(x1, ..., xm) = (x1 + k1 (mod 26), ..., xm + km (mod m))

dk(y1, ..., ym) = (y1 - k1 (mod 26), ..., ym - km (mod m))

Size of keyspace? 



Cryptanalysis of Vigenère Cipher

Thought to thwart statistical analysis, until mid-1800

Main idea: first figure out key length (m)

Two identical segments of plaintext are encrypted 
to the same ciphertext if they are δ position 
apart, where δ = 0 (mod m)

Kasiski Test: find all identical segments of length > 
3 and record the distance between them: δ1, δ2, ...

m divides gcd(δ1,δ2,...)



Index of Coincidence
We can get further evidence for the value of m as follows

The index of coincidence of a string X = x1...xn is the probability that two 
random elements of X are identical

Written Ic(X)

Let fi be the # of occurrences of letter i in X; Ic(X) = ?

For an arbitrary string of English text, Ic(X) ≈ 0.065

If X is a shift ciphertext from English, Ic(X) ≈ 0.065

For m=1,2,3,... decompose ciphertext into substrings yi of all mth letters; 
compute Ic of all substrings

Ics will be ≈ 0.065 for the right m
Ics will be ≈ 0.038 for wrong m



Then what?
Once you have a guess for m, how do you get keys?

Each substring yi:

Has length n’ = n/m

Encrypted by a shift ki

Probability distribution of letters: f0/n’, ..., f25/n’

f0+ki (mod 26)/n’, ..., f25+ki (mod 26)/n’ should be close to p0, ..., p25

Let Mg = ∑i=0,...,25 pi (fi+g (mod 26) / n’)

If g = ki, then Mg ≈ 0.065

If g ≠ ki, then Mg is usually smaller



15 minutes break



Hill Cipher

A more complex form of polyalphabetic cipher

Again, let m be a positive integer

P = C = (Z26)m

To encrypt:      (case m=2)

Take linear combinations of plaintext (x1, x2) 

E.g., y1 = 11 x1 + 3 x2 (mod 26)
      y2 = 8 x1 + 7 x2 (mod 26)

Can be written as a matrix multiplication (mod 26)



Hill Cipher, Continued
K = Mat (Z26, m)       (tentatively)

ek (x1, ..., xm) = (x1, ..., xm) k

dk (y1, ..., ym) = ?

Similar problem as for affine ciphers

Want to be able to reconstruct plaintext

Solve m linear equations (mod 26)

I.e., find k-1 such that kk-1 is the identity matrix

Need a key k to have an inverse matrix k-1



Cryptanalysis of Hill Cipher
Much harder to break with ciphertext only
Easy with known plaintext
Recall: want to find secret matrix k

Assumptions:
m is known
Construct m distinct plaintext-ciphertext pairs

(X1, Y1), ..., (Xm, Ym)
Define matrix Y with rows Y1, ..., Ym

Define matrix X with rows X1, ..., Xm

Verify: Y = X k
If X is invertible, then k = X-1 Y!



Stream Ciphers

The cryptosystems we have seen until now are block 
ciphers

Characterized by ek(x1, ..., xn) = ek(x1), ..., ek(xn)
An alternative is stream ciphers

Generate a stream of keys Z = z1, ..., zn

Encrypt x1, ..., xn as ez1(x1), ..., ezn(xn)

Stream ciphers come in two flavors

Synchronous stream ciphers generate a key stream from 
a key independently from the plaintext

Non-synchronous stream ciphers can depend on plaintext



Synchronous Stream Ciphers

A synchronous stream cipher is a tuple (P,C,K,L,E,D) and a 
function g such that:

P and C are finite sets of plaintexts and ciphertexts
K is the finite set of possible keys
L is a finite set of keystream elements
g is a keystream generator, g(k)=z1z2z3..., zi∈L

For every z∈L, there is ez∈E and dz∈D such that

dz(ez(x)) = x for all plaintexts x



Vigenère Cipher as a Stream Cipher

P = C = L = Z26

K = (Z26)m

ez(x) = x + z (mod 26)

dz(y) = y - z (mod 26)

g(k1, ..., km) = k1k2...kmk1k2...kmk1k2...km...

This is a periodic stream cipher with period m

zi+m = zi for all i ≥ 1



Linear Feedback Cipher
Here is a way to generate a synchronous stream cipher

Take P = C = L = Z2 = { 0, 1 }    (binary alphabet)

Note that addition mod 2 is just XOR

K = (Z2)2m

A key is of the form (k1, ..., km, c0, ..., cm-1)

ez(x) = x + z (mod 2)         dz(y) = y - z (mod 2)

g(k1,...,km,c0,...,cm-1) = z1z2z3...    defined as follows:

z1 = k1, ..., zm = km;       zi+m = ∑j=0,...,m-1 cjzi+j (mod 2)

If c0,...,cm-1 are carefully chosen, period of the keystream is 2m-1

Advantage: can be implemented very efficiently in hardware

For fixed c0, ..., cm-1



Cryptanalysis of Linear Feedback Cipher

Just like Hill cipher, susceptible to a known plaintext 
attack

And for the same reason: based on linear algebra
Given m, and pairs x1,x2,...,xn and y1,y2,...,yn of 
plaintexts and corresponding ciphertexts
Suppose n ≥ 2m
Note that zi = xi + yi (mod 2)  by properties of XOR
This gives k1,...,km; remains to find c0,...,cm-1

Using zi+m = ∑j=0,...,m-1 cjzi+j (mod 2), we get m linear 
equations in m unknowns (c0,...,cm-1), which we can solve



Autokey Cipher
A simple example of a non-synchronous stream cipher

P = C = K = L = Z26

ez(x) = x + z (mod 26)
dz(x) = x - z (mod 26)
The keystream corresponding to key k is

z1 = k
zi = xi-1 for all i ≥ 2.

where x1, x2, x3, ... is the sequence of plaintext

What’s the problem?


