Secret Sharing

CSG 252 Lecture 7

November 4, 2008
Riccardo Pucella

The Treasure Map Problem

- Suppose you and a "friend" find a map that leads to a treasure
- You each want to go home and prepare
- Who keeps the map?
- What if you don't trust each other?

A Real Life Solution

- Split the map in two
- Such that you need both pieces to find the island
- You and your friend each take a piece
- This is the basic idea of secret splitting
- A special case of secret sharing

Secret Splitting

- Definition: given a secret S, we would like N parties to share the secret so that the following properties hold:

1) All N parties can recover S
2) Less than N parties cannot recover S

- In general, we split the secret into N pieces (shares) S_{1}, \ldots, S_{N} and give one share to each party.

Does This Work?

- Without loss of generality, we consider the secret to be a bitstring or an integer
- We know everything can be encoded as such
- Concrete example: suppose you want to keep your salary secret, but share it between two parties. If your salary is $\$ 150,000$, you could always split it as 150 and 000, and give each a piece.
- What's a potential problem with this approach?

Partial Information Disclosure

- In the above scheme, we are leaking partial information about the secret
- E.g., the most significants digits of the salary
- Problem for some applications (not always)
- E.g., secret is a password
- In general, hard to characterize what kind of information should not be leaked, and which is okay to leak.
- So we want to forbid any kind of partial information disclosure

Revised Definition

- Revised definition: given a secret S, we would like N parties to share the secret so that the following properties hold:

1) All N parties can recover S
2) Less than N parties cannot recover S or obtain any partial information about S

- This is surprisingly easy to achieve

A Two-Party Scheme

- Suppose S is a bitstring in $\{0,1\} m$
- Choose m bits at random (coin tosses)
- Let S_{1} be those m random bits
- Let $S_{2}=S \oplus S_{1}$
- Easy: Given S_{1} and S_{2}, reconstruct $S=S_{1} \oplus S_{2}$

No Partial Information Disclosure

- Given S_{1} (or S_{2}), we do not get any partial information about S
- How can we formalize that?
- Show that given S_{1}, you do not restrict what S could have been. Information == restricted possibilities
- Given S_{1}, for any T there exists S_{T} such that

$$
S_{1} \oplus S_{T}=T
$$

- A share can be a share for any secret!

Generalization to N parties

- Suppose S is a bitstring in $\{0,1\}$ m
- Choose m bits at random (coin tosses)
- Let S_{1} be those m random bits
- Do the same for S_{2}, \ldots, S_{N-1} (all random)
- Let $S_{N}=S \oplus S_{1} \oplus \ldots \oplus S_{N-1}$
- Argument for no partial information disclosure similar to above

The Generals Problem

- You have been put in charge of designing a control mechanism for your country's nuclear arsenal. You choose a keyed secret code mechanism:
- To launch missiles, you need the right secret code
- You don't want to give every general the code
- A rogue general might just launch an attack!
- You decide to split the code among the generals
- What's your new problem?

Availability

- Secret splitting ensures that the partial information about the secret is not recoverable unless you have all the shares
- But it does not guarantee availability, that you can recover the secret even if some of the shares are unavailable
- E.g. 2 or more generals can launch missiles
- but less than 2 generals cannot

(N,T) Secret Sharing

- Definition: Given a secret S, we would like N parties to share the secret so that the following properties hold:
- Greater than or equal to T parties can recover S
- Less than T parties cannot recover S or obtain any partial information about S
- Generals problem $==(3,2)$ secret sharing
- Secret splitting $==(\mathrm{N}, \mathrm{N})$ secret sharing

Shamir's Threshold Scheme

- To motivate the general solution, consider first an $(N, 2)$ secret sharing scheme
- Secret S is an integer

Shamir's Threshold Scheme

- To motivate the general solution, consider first an $(N, 2)$ secret sharing scheme
- Secret S is an integer

Shamir's Threshold Scheme

- To motivate the general solution, consider first an $(N, 2)$ secret sharing scheme
- Secret S is an integer

Shamir's Threshold Scheme

- To motivate the general solution, consider first an $(N, 2)$ secret sharing scheme
- Secret S is an integer

Shamir's Threshald caheme

- To motivate the gene Easy to check: any two points $(N, 2)$ secret sharing can be used to recover the line and hence $(0, S)$
- Secret S is an integ

Generalizing to (N, T)

- A line intersecting the y axis $=$ degree 1 polynomial $\left[y=a_{1} x+a_{0}\right]$
- Line uniquely characterized by two points
- Once you know the line, you can compute where it crosses the y axis.
- Generalize to (N, T) threshold schemes
- Use a degree T-1 polynomial $\left[y=a_{T-1} x^{T-1}+\ldots+a_{1} x+a_{0}\right]$
- Curve uniquely characterized by T points
- Once you know the curve, you can compute where it crosses the y axis

Resharing the Secret

- This can be useful when the secret needs to be kept for a long time
- The longer a secret needs to be kept, the more likely the adversary is to get enough shares
- The Shamir threshold scheme admits resharing the secret without computing that secret

Generating New Shares

- Again, let's consider the ($\mathrm{N}, 2$) case
- Secret S is an integer

Generating New Shares

- Again, let's consider the ($\mathrm{N}, 2$) case
- Secret S is an integer

Generating New Shares

- Again, let's consider the ($\mathrm{N}, 2$) case
- Secret S is an integer

Generating New Shares

- Again, let's consider the ($\mathrm{N}, 2$) case
- Secret S is an integer

Generating New Shares

- Again, let's consider the ($\mathrm{N}, 2$) case
- Secret S is an integer

Generatin
 A central server wanting to

- Again, let's cor reshare the secret would send $h\left(x_{1}\right)$
- Secret S is an Each party would compute their new

Generating New Shares

- Again, let's consider the ($\mathrm{N}, 2$) case

General Secret Sharing

- Suppose you want an even more general way of sharing secrets
- N parties, and you specify exactly what subsets of parties can get the secret
- E.g. Bob and Alice can get together and reconstruct the secret, Bob and Charlie can get together and reconstruct the secrete, but no one else

Access Structure

- An access structure for a set P of parties is a set AS of subsets of P
- $B \in A S$ is called an authorized subset
- Access control structures are monotone:
- If $B \in A S$ and $B \subseteq C \subseteq P$, then $C \in A S$
- We often only list the "minimal" elements: the sets $B \in A S$ such that there is no $C \in A S$ with $C \subset B$

Perfect Secret Sharing Scheme for AS

- Definition: A perfect secret sharing scheme realizing the access structure AS is a method of sharing a secret S among a set P of parties such that:

1) Any authorized subset of $A S$ can recover S
2) No unauthorized subset can recover S or obtain any partial information about S

Threshold Access Structures

- Let P be a set of N parties
- Take $A S=\{B \subseteq P:|B| \geq T\}$
- This is called a threshold access structure
- $A(N, T)$ secret sharing scheme $==a$ perfect secret sharing scheme realizing a threshold access structure

Secret Sharing Scheme for AS

- Given an access structure AS, we want a perfect secret sharing scheme realizing AS
- We use a Boolean circuit corresponding to AS
- And a secret-splitting scheme
- e.g., the \oplus-based scheme

Boolean Circuit for AS

- Inputs to the circuit:
- a wire for every element of P
- Output of the circuit:
- whether the set of elements that are given a 1 on input is a member of AS
- Can be constructed from the "minimal elements" of AS

Example Circuit

- $P=\left\{P_{1}, P_{2}, P_{3}, P_{4}\right\}$
- AS with min elts $\{$ \{P1,P2,P4\}, $\{P 1, P 3, P 4\},\{P 2, P 3\}\}$

The Scheme

- Given a secret S as a bitstring in $\{0,1\}^{m}$
- First set output wire of circuit to be S

The Scheme

- Then duplicate secret back through a V node

The Scheme

- For every \wedge node, do a (T,T) secret-splitting of the output of the node among the inputs of the node

The Scheme

- For every \wedge node, do a (T,T) secret-splitting of the output of the node among the inputs of the node

The Scheme

- For every \wedge node, do a (T,T) secret-splitting of the output of the node among the inputs of the node

The Scheme

- For every \wedge node, do a (T,T) secret-splitting of the output of the node among the inputs of the node

The Scheme

- Give the appropriate shares to each party by looking at the wires out of that party

The Scheme

- Give the appropriate shares to each party by looking at the wires out of that party

P_{1} gets $\left\{a_{1}, c_{1}\right\}$
P_{2} gets $\left\{a_{2}, b_{1}\right\}$
P_{3} gets $\left\{S \oplus b_{1}, c_{2}\right\} \quad P_{4}$ gets $\left\{S \oplus a_{1} \oplus a_{2}, S \oplus c_{1} \oplus c_{2}\right\}$

The Scheme

- Give the appropriate shares to each party by looking at the wires out of that party

P_{1} gets $\left\{a_{1}, c_{1}\right\} \quad P_{2}$ gets $\left\{a_{2}, b_{1}\right\}$
P_{3} gets $\left\{S \oplus b_{1}, c_{2}\right\} \quad P_{4}$ gets $\left\{S \oplus a_{1} \oplus a_{2}, S \oplus c_{1} \oplus c_{2}\right\}$

CHECK: This is a perfect secret sharing scheme

