Signature Schemes

CSG 252 Lecture 6

October 21, 2008

Riccardo Pucella

Signatures

- Signatures in "real life" have a number of properties
- They specify the person "responsible" for a document
- E.g. that it has been produced by the person, or that the person agrees with the document
- Physically attached to a particular document
- Easily verifiable by third parties
- We want a similar mechanism for digital documents
- Some difficulties:
- Need to bind signature to document
- Need to ensure verifiability (and avoid forgeries)

Formal Definition

A signature scheme is a tuple (P, A, K, S, V) where:

- P is a finite set of possible messages
- A is a finite set of possible signatures
- K (the keyspace) is a finite set of possible keys
- For all k, there is a signature algorithm sig_{k} in S and a verification algorithm verk in V such that
- sigk $: ~ P \rightarrow A$
- verk: $P \times A \rightarrow$ \{true,false\}
- $\operatorname{ver}_{k}(x, y)=$ true iff $y=\operatorname{sig}_{k}(x)$
- A pair $(x, y) \in P \times A$ is called a signed message

Example: RSA Signatures

- The RSA cryptosystem (in fact, most public key cryptosystems) can be used as a signature scheme
- Take:
- $\operatorname{sig}_{k}(x)=d_{k}(x)$
- $\operatorname{ver}_{k}(x, y)=\left(x=? e_{k}(y)\right)$
- Only user can sign (because decryption is private)
- Anyone can verify (because encryption is public)

Signing and Encrypting

- Suppose you want to sign and encrypt a piece of data
- Where encryption is public key (why is this important?)
- Public key cryptography does not say anything about the sender
- Two possibilities:
- First encrypt, then sign: $x \rightarrow$ ($e_{\text {ke }}(x)$, sigks $\left.\left(e_{\text {ke }}(x)\right)\right)$
- But adversary could replace by $\operatorname{sig}_{k e^{\prime}}\left(e_{k e}(x)\right)$ making it seem the message came from someone else
- First sign, then encrypt: $x \rightarrow$ ($e_{\text {ke }}(x)$, sigks $\left.(x)\right)$
- Better make sure signature does not leak info!

Possible Attacks

- (Alice is the signer, Oscar the attacker)
- Key-only attack
- Oscar possesses Alice's public verification algorithm
- Known message attack
- Oscar possesses a list of signed messages (x_{i}, y_{i})
- Chosen message attack
- Oscar queries Alice for the signatures of a list of messages x_{i}

Possible Adversarial Goals

- Total break
- Oscar can derive Alice's private signing algorithm
- Selective forgery
- Oscar can create a valid signature on a message chosen by someone else, with some nonnegligible probability
- Existential forgery
- Oscar can create a valid signature for at least one message

Some Comments

- Cannot have unconditional security, only computational or provable security
- Attacks above are similar to those against MACs
- For MACs, we mostly concentrated on existential forgeries against chosen message attacks
- Existential forgeries against chosen message attacks:
- Least damage against worst attacker
- The minimum you should ask for

Security of RSA Signatures

- Existential forgery using a key-only attack:
- Choose a random y
- Compute $x=e_{k}(y)$
- We have $y=\operatorname{sig}_{k}(x)$, a valid signature of x
- Existential forgery using a known-message attack:
- Suppose $y=\operatorname{sig}_{k}(x)$ and $y^{\prime}=\operatorname{sig}_{k}\left(x^{\prime}\right)$
- Can check $e_{k}\left(y y^{\prime} \bmod n\right)=x x^{\prime} \bmod n$
- So $y y^{\prime} \bmod n=\operatorname{sig}_{k}\left(x x^{\prime} \bmod n\right)$
- Existential forgery using a chosen message attack:
- To get a signature for x_{1} find $x_{1} x_{2}=x \bmod n$
- Query for signatures of x_{1} and x_{2}
- Apply previous attack

Signatures and Hashing

- The easiest way to get around the above problems is to use a cryptographic hash function
- Given message x
- Produce digest $h(x)$
- Sign digest $h(x)$ to create ($x, \operatorname{sig}_{k}(h(x))$)
- To verify:
- Get (x,y)
- Compute $h(x)$
- Check verk $(h(x), y)$

Use of Hashing for Signatures

- Existential forgery using a chosen message attack
- Oscar finds x, x^{\prime} s.t. $h(x)=h\left(x^{\prime}\right)$
- He gives x to Alice and gets her to sign $h(x)$
- Then ($x^{\prime}, \operatorname{sig}_{k}(h(x))$) is a valid signed message
- Prevented by having h collision resistant
- Existential forgery using a known message attack
- Oscar starts with (x, y), where $y=\operatorname{sigk}_{k}(h(x)$)
- He computes $h(x)$ and tries to find x^{\prime} s.t. $h\left(x^{\prime}\right)=h(x)$
- Prevented by having h second preimage resistant
- Existential forgery using a key-only attack
- (If signature scheme has existential forgery using a key-only attack)
- Oscar chooses message digest and finds a forgery z for it
- Then tries to find x s.t. $h(x)=z$
- Prevented by having h preimage resistant

Example: ElGamal Signature Scheme

- Let p be a prime s.t. discrete \log in Z_{p} is hard
- Let a be a primitive element in $Z_{p}{ }^{*}$
- $P=Z_{p}{ }^{*}, A=Z_{p}{ }^{*} \times Z_{p-1}$
- $K=\left\{(p, \alpha, a, \beta) \mid \beta=\alpha^{a}(\bmod p)\right\}$
- For $k=(p, \alpha, a, \beta)$ and $t \in Z_{p-1}{ }^{*}$
- $\gamma=\alpha^{\dagger} \bmod p$
- $\operatorname{sig}_{k}(x, t)=\left(\gamma,(x-a \gamma) t^{-1}(\bmod p-1)\right)$
- $\operatorname{ver}_{k}(x,(\gamma, \delta))=\left(\beta^{\gamma} \gamma^{\delta}=? \alpha^{x}(\bmod p)\right)$
- Exercise: check that verk $\left(x, \operatorname{sig}_{k}(x, t)\right)=$ true

Security of ElGamal Scheme

- Forging a signature (γ, δ) without knowing a
- Choosing γ and finding corresponding δ amounts to finding discrete log
- Choosing δ and finding corresponding γ amounts to solving $\beta^{\gamma} \gamma^{\delta}=\alpha^{x}(\bmod p)$
- No one knows the difficulty of this problem (believed to be hard)
- Choosing γ and δ and solving for the message amounts to finding discrete log
- Existential forgery with a key-only attack:
- Sign a random message by choosing γ, δ and message simultaneously (p.289)

Variant 1: Schnorr Signature Scheme

- ElGamal requires a large modulus p to be secure
- A 1024 bit modulus leads to a 2048 bit signature
- Too large for some uses of signatures (smartcards)
- Idea: use a subgroup of Z_{p} of size $q(q \ll p)$
- Let p be a prime s.t. discrete \log is hard in $Z_{p}{ }^{*}$
- Let q be a prime that divides $p-1$
- Let α in $Z_{p}{ }^{*}$ be a q-th root of $1 \bmod p$
- Let $h:\{0,1\}^{*} \rightarrow Z_{q}$ be a secure hash function
- $P=\{0,1\}^{*}, A=Z_{q} \times Z_{q}$
- $K=\left\{(p, q, \alpha, a, \beta) \mid \beta=\alpha^{a}(\bmod p)\right\}$
- For $k=(p, q, \alpha, a, \beta)$ and $1 \leq t \leq q-1$:
- $\gamma=h\left(x \| \alpha^{+} \bmod p\right)$
- $\operatorname{sig}_{k}(x, t)=(\gamma, t+a \gamma \bmod q)$
- $\operatorname{ver}_{k}(x,(\gamma, \delta))=\left(h\left(x \| \alpha^{\curlyvee} \beta^{-\gamma} \bmod p\right)=? \gamma\right.$

Variant 2: DSA

- DSA = Digital Signature Algorithm
- Let p be a prime s.t. discrete \log is hard in Z_{p}
- bitlength of $p=0(\bmod 64), 512 \leq$ bitlength ≤ 1024
- Let q be a 160 bit prime that divides $p-1$
- Let α in $Z_{p}{ }^{*}$ be a q-th root of $1 \bmod p$
- Let $h:\{0,1\}^{*} \rightarrow Z_{q}$ be a secure hash function
- $P=\{0,1\}^{*}, A=Z_{q}{ }^{*} \times Z_{q}{ }^{*}$
- $K=\left\{(p, q, \alpha, a, \beta) \mid \beta=\alpha^{a}(\bmod p)\right\}$
- For $k=(p, q, \alpha, a, \beta)$ and $1 \leq \dagger \leq q-1$:
- $\gamma=\left(\alpha^{+} \bmod p\right) \bmod q$
- $\operatorname{sig}_{k}(x, t)=\left(\gamma,(S H A 1(x)+a \gamma) t^{-1} \bmod q\right)$
- $\operatorname{ver}_{k}(x,(\gamma, \delta))=\left(\alpha^{e 1} \beta^{e 2} \bmod p\right) \bmod q=$? γ
- el $=\operatorname{SHAl}(x) \delta^{-1} \bmod q$
- $e 2=\gamma \delta^{-1} \bmod q$

Variant 3: Elliptic Curve DSA

- Modification of the DSA to use elliptic curves
- Instead of choosing α, β, use A and B two points on an elliptic curve over Z_{p}
- Roughly speaking, instead of: $\left(\alpha^{\dagger} \bmod p\right) \bmod q$ use the x coordinate of the point $\dagger \mathrm{A}, \bmod q$
- The rest of the computation is as before

Provably Secure Signature Schemes

- The previous examples were (to the best of our knowledge) computationally secure signature scheme
- Here is a provably secure signature scheme
- As long as only one message is signed
- Let m be a positive integer
- Let $f: Y \rightarrow Z$ be a one-way function
- $P=\{0,1\}^{m,} A=Y^{m}$
- Choose $y_{i, j}$ in Y at random for $1 \leq i \leq m, j=0,1$
- Let $z_{i, j}=f\left(y_{i, j}\right)$
- A key $=2 m$ y's and $2 m$ z's (y's private, z 's public)
- $\operatorname{sig}_{k}\left(x_{1}, \ldots, x_{m}\right)=\left(y_{1, \times 1}, \ldots, y_{m, x m}\right)$
- $\operatorname{ver}_{k}\left(\left(x_{1}, \ldots, x_{m}\right),\left(a_{1}, \ldots, a_{m}\right)\right)=\left(f\left(a_{i}\right)=\right.$? $\left.z_{i, x i}\right)$ for all i

Argument for Security

- Argument for provable security:
- Existential forgeries using a key-only attack
- Assume that f is a one-way function
- Show that if there is an existential forgery using a key-only attack, then there is an algorithm that finds preimage of random elements in the image of f with probability at least $1 / 2$
- We need the restriction to one signature only
- If the attacker gets two messages signed with the same key, then can easily construct signatures for other messages
- ($0,1,1$) and $(1,0,1)$ can give signatures for ($0,0,1$), $(1,1,1)$

Undeniable Signature Schemes

- Introduced by Chaum and van Antwerpen in 1989
- A signature cannot be verified without the signer
- Prevent signer from disavowing signature
- Let p, q primes, $p=2 q+1$, and discrete \log hard in $Z_{p}{ }^{*}$
- Let α in Z_{p}^{*} be an element of order q
- $G=$ multiplicative subgroup of $Z_{p}{ }^{*}$ of order q
- $P=A=G$
- $K=\left\{(p, \alpha, a, \beta\} \mid \beta=\alpha^{a} \bmod p\right\}$
- For key $k=(p, \alpha, a, \beta)$ and x in G :
- $\operatorname{sig}_{k}(x)=x^{a} \bmod p$
- To verify (x, y) : pick e_{1}, e_{2} at random in Z_{q}
- Compute $c=y^{e 1} \beta^{e 2}$
- Signer computes $d=c^{i n v(a)} \bmod q \bmod p \quad\left(w h e r e \operatorname{inv}(a)=a^{-1}\right)$
- y is a valid signature iff $d=x^{e 1} \alpha^{e 2} \bmod p$

Disavowal Protocol

- Can prove that Alice cannot fool Bob into accepting a fraudulent signature (except with very small probability $=1 / \mathrm{q}$)
- What if Bob wants to make sure that a claimed forgery is one?

1. Bob chooses e_{1}, e_{2} at random in $Z_{q}{ }^{*}$
2. Bob computes $c=y^{e 1} \beta^{e 2} \bmod p$; sends it to Alice
3. Alice computes $d=c^{i n v(a)} \bmod 9 \bmod p$; sends it to Bob
4. Bob verifies $d \neq x^{e l} \alpha^{e 2} \bmod p$
5. Bob chooses f_{1}, f_{2} at random, in $Z_{q}{ }^{*}$
6. Bob computes $C=y^{f 1} \beta^{f 2}$ mod p; sends it to Alice
7. Alice computes $D=C^{\text {inv(a) }} \bmod q \bmod p$; sends it to Bob
8. Bob verifies $D \neq x^{f 1} \alpha^{f 2} \bmod p$
9. Bob concludes y is a forgery iff $\left(d \alpha^{-e 2}\right)^{f 1}=\left(D \alpha^{-f 2}\right)^{e 1} \bmod p$

Why Does This Work?

- Alice can convince Bob that an invalid signature is a forgery
- If $y \neq x^{a} \bmod p$ and Alice and Bob follow the protocol, then the check in last step succeeds
- Alice cannot make Bob believe that a valid signature is a forgery except with a very small probability
- Intuition: since she cannot recover $e_{1}, e_{2}, f_{1}, f_{2}$, she will have difficulty coming up with d and D that fail steps 4 and 8, but still pass step 9
- See Stinson for details

