Anonymity, Onion Routing, and Tor

Presented by: ?
(preserving my anonymity)
Online Anonymity: What?

- A concept where the identities of communicators are kept secret
- Anonymous online activity
 - Performing online communications
 - No one can (logically) infer who is talking to whom on a public network
- Online privacy requires more than just encrypting/decrypting data...
 ..we must also protect the identities!
Traffic Analysis

- Online message = Data + Headers
- Headers include:
 - Sender (IP address)
 - Receiver (IP address)
 - Size of data
 - Time sent
 - Etc..
- Even if the data is encrypted, revealing information can still be found in the headers
- Traffic analysis is the process of inferring who is talking to whom on a public network
Online Anonymity: Why?

- Public knowledge of the source and destination of internet traffic *could* be detrimental
 - Information could be used against the users by adversaries

- Adversaries:
 - Greedy corporations
 - Withhold health insurance to those who search for information about life-threatening diseases
 - Price discrimination based on location
 - Sneaky Advertisers
 - User profiling
 - Profile sharing (or even identity theft)
 - Censorship-happy governments
 - Penalties for accessing sensitive information
 - Militant organizations
 - Communicating with "the enemy" may be life-threatening
Online Anonymity: How?

- Anonymous proxies
 - Weaknesses:
 - Trusting an unknown proxy provider
 - Man in the middle attacks

- Onion Routing / Tor
 - Weakness:
 - To be discussed
Onion Routing: What?

- Provides anonymous connections through "onion routers"

Overview of process:

1. Sender creates a message
2. Message gets encrypted several times (the onion)
3. Message gets sent through several onion routers
4. Each onion router decrypts (peels a layer off of the onion) and passes it on to the next
5. Finally, receiver receives a completely decrypted message
Onion Routing: How?

- **Onion Router**
 - A node in the onion routing network

- **Onion Proxy**
 - Gets message from sender, constructs onion, and determines onion route

- **Exit Node**
 - The last onion router sends the message to the receiver

- **Onion**
 - A layered, encrypted data object
 - Decryption results in:
 - Smaller onion (or message)
 - Location for the next router
 - Encryption key for return trip
Onion Routing: How?
Onion Routing: Why?

- Ensures anonymity
 - Each onion knows only its predecessor and successor
 - If a node is compromised, anonymity is not compromised
- Protects against traffic analysis
 - Traffic analysis only reveals the exit node and the receiver
Onion Routing: Why not?

- Only a proof of concept was ever built
- Does not prevent against timing analysis
 - Analyze the time between when certain nodes send messages and other nodes receive
- Exit node sniffing (eavesdropping)
 - Traffic to/from exit node is not encrypted
Tor: What?

- The Onion Router
 - A second-generation onion router

- A routing service that is:
 - Free
 - More secure
 - Scalable
 - Widely-adopted
Tor: How?

How Tor works: 4

Nine Tor nodes and 4 users / Tor nodes

A: Alice connects to Bob - B: Bob connects to Dave
J: Jane connects to Alice - D: Dave connects to Jane
Tor: Why?

- Major improvements over first-generation
 - Perfect forward secrecy
 - Previous and subsequent messages can't be compromised even if an encryption key is compromised
 - Works with more than just browser-based traffic
 - SOCKS compliant
 - IM clients
 - DNS servers
 - DNS lookups go through the onion routing network instead of bypassing it
 - Many more features...
Tor: Extra features

- Works with Linux/OS X/Windows
- Firefox plug-in
- Pidgin plug-in
- Easy GUI
Questions