
Neural Key Exchange

Presented by: Jessica Lowell
10 December 2009
CS 6750

What is a neural network?

 Simple processing
elements which can
exhibit complex global
behavior through
connections and
parameters

 Input, output, and
hidden nodes

 Interested in learning a
function from inputs to
output Source: GameDev.net

Neural networks in cryptography

 First used for DES cryptanalysis (Dourlens, 1995)
 Decryption (Shihab, 2006)
 Pseudo-random number generation (Karras &

Zorkadis, 2003)
 Neural key exchange

The last of these is what we are looking at!

Tree-parity machines

 Type of multilayer
feedforward network

 One output, K hidden
neurons, K*N inputs,
inputs are binary

 Output of each hidden
neuron is sum of all
multiplications of input
neurons, weights

 Binary output value Source: Wikimedia Commons

Synchronization

 The basis of neural key exchange is
synchronization of the weights of tree parity
machines.

 Similar to synchronization of chaotic oscillators in
chaos communications

 We want to synchronize the weights of the TPMs
to establish a key!

Kanter-Kinzel-Kanter:
Three main ingredients

 Knowledge of output does not uniquely determine
internal representation, so observer cannot tell
which weight vector was updated (hidden units)

 Tree parity machine
 Bounded weights

What does this mean?

Observer cannot recover initial weight vectors from
the knowledge of time-dependent synchronized
keys.

Kanter-Kinzel-Kanter:
The protocol

1. Initialize random weight values for each party's
tree parity machine.

2. Do until synchronization is achieved:
1. Generate random input vector X
2. Compute the hidden neuron values
3. Compute the output neuron value
4. Compare the output values of the tree parity

machines
If outputs are different, go to 2.1
If outputs are the same, apply a learning rule

(e.g. Hebbian, Anti-Hebbian, Random Walk)
to the weights

Why this is really intriguing

 Low complexity (linear with size of the network)
 Not based on number theory

− Could potentially give rise to faster key exchange
− Algorithms based on number theory are potentially

vulnerable to having their operations inverted by
quantum computers – neural algorithms possibly more
secure

Can it be brute-forced?

 Attacker would have to test all possible keys
 (2L+1)KN possibilities
 For a reasonable value of N, is is impossible with

today's computer power.

Can attacker fight fire with fire?

Can attacker learn with own tree parity machine?

 Kanter, Kinzel, Kanter observed empirically that
attacker synchronized less quickly than Alice and
Bob

 Attacker is less likely to make coordinated move
with either of the parties than they are to make
coordinated move with each other (Klimov et al,
2002)

So what's the catch?

Klimov, Mityaguine, and Shamir found three
unusual attacks to which neural key exchange was
vulnerable:

1. Geometric attack
2. Genetic attack
3. Probabilistic analysis

Vulnerability: Geometric attack

 Based on the geometric interpretation of the action
of a perceptron

The procedure:

 If output A != output B, the attacker doesn't update
output C

 If output A = output B and output A = output C,
attacker updates using the learning rule

 Otherwise, attacker uses geometry-based formula
to update

Vulnerability: Genetic attack

 A biologically-inspired attack for a biologically-
inspired cryptosystem

 Simulates a population of tree parity machines
trained with the same inputs as those of the two
parties

 “At each stage...networks whose outputs mimic
those of the two parties breed and multiply, while
unsuccessful networks die.”

Vulnerability: Probabilistic analysis

 Easier to predict the position of a bounded point in
a random walk after several moves, than to guess
its original position

 The attacker does not know which perceptrons are
updated in each round (the moves are unknown)

 Attack uses dynamic programming to calculate the
probabilities of particular outputs using probability
distribution

Fixes

 Authentication (Volkmer & Schaumburg, 2004)
 Addition of feedback mechanism (Prabakaran et

al, 2008)
 One party sending erroneous output bits which the

other party can predict and remove (Allam &
Abbas, 2009)

Other improvements on the original
protocol

 “Public channel cryptography by synchronization
of neural networks and chaotic maps” (Mislovaty
et al, 2003)

 “Neural cryptography with feedback” (Ruttor et al,
(2004

Conclusion

Neural key exchange is promising against
conventional attacks and quantum computing, but
needs work against some unconventional attacks.

	Slide 1
	What is a neural network?
	Neural networks in cryptography
	Tree-parity machines
	Synchronization
	Kanter-Kinzel-Kanter: Three main ingredients
	Kanter-Kinzel-Kanter: The protocol
	Why this is really intriguing
	Can it be brute-forced?
	Can attacker fight fire with fire?
	So what's the catch?
	Vulnerability: Geometric attack
	Vulnerability: Genetic attack
	Vulnerability: Probabilistic analysis
	Fixes
	Other improvements on the original protocol
	Conclusion

