Electronic Cash

Creence Lin
December 10, 2009
Outline

• Motivation for electronic cash payment system
 • Pros and cons of traditional cash
 • Pros and cons of payments by instruction
 • Properties of an ideal payment system
• Model of Electronic Cash
 • How participants authenticate each other
 • About Authentication Methods Not Studied in Class
 • Representing electronic cash itself
• Fraud Detection and Prevention
• Privacy Concerns
 • Blinding
Pros and cons of traditional cash

Pros
- Privacy
- High acceptability
- Person to person payments without bank involvement
- Instantaneous use

Cons
- May not always have exact change
- Costly to produce and handle
- No loss theft protection
- Criminal activity
- Requirement for physical proximity of payer and payee
Pros and cons of payments by instruction (credit, debit cards, etc.)

Pros

- Transportable and storable with convenience and low cost
- Less risks of theft and loss since actual value resides at banks
- No requirement for physical proximity of payer and payee

Cons

- Difficult to ensure authenticity without chip cards and cryptographic authentication
- Chip cards do not address online authentication techniques
- Online verification and processing is expensive for payees
- Lack of privacy
What would we want in a payment system?

- spontaneous payments including offline payment verification
- no bank involvement – payment from person to person
- privacy
- hard to forge
- transportable and storable with convenience and low cost
- cheap to replace when worn out
- payable without many bank notes
- able to trace criminal activity
- Loss theft protection
- No requirement for physical proximity of payer and payee
- Low processing and handling costs
- High acceptability
- Cost effective for low value purchases

The best of both traditional cash and payments by instruction.
Electronic Cash Model

Withdrawal Protocol - take traditional money and move to float account

Deposit Protocol - sell electronic cash back to bank

Payment Protocol (offline)

≥1 Payer (consumer) → Bank of the World → ≥1 Payee (merchant)

Need at least 1 computing device per participant (payer, payee, etc.)
Authentication

• Paying device computes a response to receiving device based on its secret key and a challenge
 – Design challenge response protocols can be conventional (MACs) or based on public key cryptography, zero knowledge authentication, DES, RSA, digital signatures, Lamport signatures, matrix based signatures, tree authentication etc.
• Dynamic authentication prevents replay attacks
• Diversified keys with digital signatures on the paying device’s ID number provide additional security over a system wide secret key
• Can also use session key.
Matrix Based Signatures

- Matrix based signature signs messages of \(\text{int}(\log_2 r^c) \) bits expanded into an r-ary representation.

Uses matrices generated from c random numbers and a hash function applied to elements of the matrices with r rows.

- A better signature storage that verifies by computing top rows of message and control matrix

- Example: Sign the 6-bit message 010011, with 4-ary expansion 103
Tree Authentication

- Tree Authentication
 - One time signature scheme using single public key (Root node)
 - To compute a digital signature on a message, the paying device uses a leaf of the tree that has not been used before
Electronic Cash Representations

Register Based Cash
- Amount of electronic cash maintained in a chip register by means of the value of a counter
- Minimal storage space
- If tampered, counters can be bypassed or updated without bank authorization
- Paying device must authenticate amount transferred
- Depending on authentication type, receiving device can store as register based cash, electronic check for deposit, or electronic coins for spending

Electronic Coins
- Cryptographic tokens assigned a fixed denomination and currency (message) that are digitally signed by the bank
- Verifiable solely by using the signature public key of the bank
- Storage space must be allocated
- Two part form has (message, signature) pair, but subject to coin theft or copying.
- Three part form has secret key used to compute the digital signature from challenge message of receiving device, public key, certificate on public key.
 - Receiving device cannot reuse coins - must deposit coin since it does not know the secret key, but can verify payment using public key.
Fraud Detection and Prevention

• Certain electronic cash models are better for fraud detection:
 – The digitally signed message of the paying device ties the received value for electronic checks and coins transactions. (Coins more difficult to overspend)
 – System wide secret keys make it difficult to trace compromised devices
 – Three part coins have secret keys that are stored solely in the paying device making fraud easier to trace
 – Including intended payee in signature prevents man in middle attack

• Banks should take common sense precautions:
 – Tracing to a device does not mean owner is guilty, but compromised devices, checks, and coins should still be blacklisted
 – Master and certification keys should be refreshed on a regular basis indicated by expiration dates.
 – Devices should be able to resend last message in event of interruption
 – Control account access, software should be secure, etc.
Privacy

• Goal: Balance untraceability without encouraging criminal activity

Bad idea: Relax standards

• Collect only aggregate data, have anonymous devices or accounts
 – cannot trace criminal activity
• In the case of anonymous accounts:
 1. is not truly private since transactions can be linked to a single account/device
 2. sometimes illegal

Better idea: Blinding

• A receiver can obtain digitally signed information that remains hidden from the issuer.
• Obtains the same signature as if you had not hidden the information
Blinding

Simplified blinding example: signer doesn’t know message

Regular RSA signatures
- A receiver gives a message m to the signer who signs with the private decryption key $d=1/e$.
 - $m^{1/e} \mod n$

Blind RSA signatures
- The message m is multiplied by r^e where r is a random nonzero integer and e is the public encryption key.
 - $(r^em)^{1/e} \mod n = rm^{1/e} \mod n$
- A receiver gives a message r^em to the signer who signs with the private decryption key $d=1/e$.
- The receiver multiplies result by r^{-1}
 - $r^{-1} rm^{1/e} \mod n = m^{1/e} \mod n$

- This example shows how the receiver can get the same signature from a signer without revealing the message.
- The receiver (payer) could be asking the signer (bank) to sign a fraudulent message and the bank will not be able to trace and blacklist the device.
- One show blinding, a variation of the concept, traces double spent coins without sacrificing untraceability.
Cut and Choose Blinding

Type of one show blinding - variant of blind RSA signature

Blind RSA signatures
- The message m is multiplied by r^e where r is a random nonzero integer and e is the public encryption key
- A receiver gives a message r^em to the signer
- who signs with the private decryption key $d=1/e$.
 - $(r^em)^{1/e}\mod n=rm^{1/e}\mod n$
- The receiver multiplies result by r^{-1}
 - $r^{-1}rm^{1/e}\mod n=m^{1/e}\mod n$

Cut and choose
- For each of k i’s the one way function f (instead of message m) with inputs a, c, d is multiplied by r^e where a, c, d, r are random nonzero integers and e is the public encryption key
- A receiver gives all the messages $r_i^e f(a_i, c_i, d_i)$ to the signer.
- The bank chooses a subset of the i’s to be revealed and the signer will reveal a_i, c_i, d_i, r_i for those i’s.
- If the revealed candidates have been received properly, the signer signs the remaining the product of the remaining i’s with the private decryption key $d=1/e$.
- One of the cons of this method is too much data exchange.