Braid Based Cryptosystems

Kate Berry
10 December 2009
Background on Braids

Definition: For \(n \geq 2 \), the braid group \(B_n \) is defined by:

\[
\langle \sigma_1, \ldots, \sigma_{n-1} ; \sigma_i \sigma_j = \sigma_j \sigma_i \text{ for } |i - j| \geq 2, \sigma_i \sigma_j \sigma_i = \sigma_j \sigma_i \sigma_j \text{ for } |i - j| = 1 \rangle.
\]

For each \(n \), the identity mapping embeds \(B_n \) into \(B_{n+1} \) so that the groups \(B_n \) arrange into a more complex grouping.

Each \(\sigma_i \) can be seen as a projection of a three dimensional figure.

Figure 1. Braid diagrams associated with \(\sigma_i, \sigma_i^{-1} \), and with \(\sigma_1 \sigma_2^{-1} \sigma_3 \sigma_1^{-1} \).
Two braids p, p' are **conjugate** if $p' = sps^{-1}$ for some braid s.

The **Conjugacy Problem** is the question of algorithmically recognizing whether two braids p, p' are conjugate.

The **Conjugator Search Problem** is the related question of finding a conjugating braid for a pair (p, p') of conjugate braids, i.e., finding s satisfying $p' = sps^{-1}$.
Braid Based Key Exchange
The Anshel-Anshel-Goldfield Scheme

The public key consists of two sets of braids, p_1, \ldots, p_l, q_1, \ldots, q_m, in B_n.

Alice’s secret key is a word u on l letters and their inverses.

Bob’s secret key is a word v on m letters and their inverses.

- A computes the braid $s = u(p_1, \ldots, p_\ell)$, and uses it to compute the conjugates $q'_1 = sq_1s^{-1}$, \ldots, $q'_m = sq_ms^{-1}$; she sends q'_1, \ldots, q'_m.
- B computes the braid $r = v(q_1, \ldots, q_m)$, and uses it to compute the conjugates $p'_1 = rp_1r^{-1}$, \ldots, $p'_\ell = rp_\ell r^{-1}$; he sends p'_1, \ldots, p'_ℓ.
- A computes $t_A = s u(p'_1, \ldots, p'_\ell)^{-1}$.
- B computes $t_B = v(q'_1, \ldots, q'_m)^{-1}$.

The common key is $t_A = t_B$.

To check this, we can see that

$$t_A = s u(p'_1, \ldots, p'_\ell)^{-1} = s r u(p_1, \ldots, p_\ell)^{-1} r^{-1}$$

$$= s r s^{-1} r^{-1} = s v(q_1, \ldots, q_m) s^{-1} r^{-1} = v(q'_1, \ldots, q'_m)^{-1} = t_B$$
Braid Based Key Exchange:
A Diffie-Hellman-like Scheme

Braids involving disjoint sets of strands commute. Let LB_n the subgroup of Bn generated by $\sigma_1, \ldots, \sigma_{m-1}$ and UB_n generated by $\sigma_{m+1}, \ldots, \sigma_{n-1}$ with $m = n/2$,
Note that every braid in LB_n commutes with every braid in UB_n.

The public key consists of one braid p in B_n
Alice’s secret key s is in LB_n and Bob’s secret key r is in UB_n

- A computes the conjugate $p' = s p s^{-1}$, and sends it to B;
- B computes the conjugate $p'' = r p r^{-1}$, and sends it to A;
- A computes $t_A = s p'' s^{-1}$;
- B computes $t_B = r p' r^{-1}$.
The common key is $t_A = t_B$.

Thus because s and r commute, we have

$$t_A = s p'' s^{-1} = s r p r^{-1} s^{-1} = r s p s^{-1} r^{-1} = r p' r^{-1} = t_B.$$
Authentication: A Diffie-Hellman-like Scheme

The public key is a pair of conjugate braids \((p, p')\) in \(B_n\) with \(p' = sps^{-1}\), Alice’s private key is the braid \(s\) used to conjugate \(p\) into \(p'\), \(s\) belongs in \(LB_n\) and \(h\) is a collision free, one way hash function on \(B_n\).

- B chooses a random braid \(r\) in \(UB_n\), and he sends the challenge \(p'' = rpr^{-1}\) to A;
- A sends the response \(y = h(s p'' s^{-1})\);
- B checks \(y = h(rp'r^{-1})\).

the braids \(r\) and \(s\) commute so \(rp'r^{-1} = sp''s^{-1}\).
As before, the public keys are a pair of conjugate braids \((p, p')\) with
\[p' = sps^{-1}, \]
while \(s\), the conjugating braid, is Alice's private key.

In contrast to the previous schemes, both \(p\) and \(s\) lie in \(B_n\). We still assume that \(h\) is a collision-free one-way hash function on \(B_n\). The authentication procedure consists in repeating \(k\) times the following three exchanges:

- A chooses a random braid \(r\) in \(B_n\), and she sends the commitment
 \[x = h(rp'r^{-1}); \]
- B chooses a random bit \(c\) and sends it to A;
- For \(c = 0\), A sends \(y = r\), and B checks \(x = h(yp'y^{-1});\)
- For \(c = 1\), A sends \(y = rs\), and B checks \(x = h(ypy^{-1}).\)
Braid Based Signature

The public keys are a pair of conjugate braids \((p, p')\) with \(p' = sps^{-1}\), \(s\) is Alice’s private key; the braids \(p\) and \(s\) belong to \(B_n\).
We use \(H\) for a one-way collision-free hash function from \(\{0, 1\}^*\) to \(B_n\);
we use \(\sim\) for conjugacy in \(B_n\).
The first scheme is as follows:

- A signs the message \(m\) with \(q' = sqs^{-1}\), where \(q = H(m)\);
- B checks \(q' \sim q\) and \(p'q' \sim pq\).

A possible weakness of the previous scheme lies in that repeated uses disclose many conjugate pairs \((q_i, q'_i)\) associated with the common conjugator \(s\). To avoid this, the scheme can be modified by incorporating an additional random braid.

- A chooses a random braid \(r\) in \(B_n\);
- A signs the message \(m\) with the triple \((p'', q'', q')\), where \(p'' = rpr^{-1}\), \(q = H(mh(p''))\), \(q'' = rqr^{-1}\), and \(q' = rs^{-1}qsr^{-1}\);
- B checks \(p'' \sim p\), \(q'' \sim q' \sim q\), \(p''q'' \sim pq\), and \(p'q' \sim p'q\).