Secure Multiparty Computations

CS 6750 Lecture 11

December 3, 2009

Riccardo Pucella

The Last Few Lectures...

Secret sharing:

- How to get two or more parties to share a secret in such a way that each individual cannot recover the secret from their share
- Zero-knowledge protocols:
 - How to get a party to prove to another that she knows a secret without revealing that secret

Today:

• How to compute with secrets

Suppose Alice has two messages m_0 and m_1

- Suppose Bob has a bit b (= 0 or 1)
- Bob wants to have mb

Constraints:

- Bob does not want Alice to know b
 - (Or, equivalently, which m_b he wants)
- Alice does not want Bob to know both m_0 and m_1

(RSA-based version)

Alice generates an RSA key mod N (public e, private d)

A B B bit b

(RSA-based version)

(RSA-based version)

(RSA-based version)

(RSA-based version)

A	N, e, x ₀ , x ₁	В
msgs m_0 , m_1 random x_0 , x_1		bit b random k
$t_0 = m_0 + (q - x_0)^d$	† ₀ , † ₁	$q = k^e + x_b \pmod{N}$
$t_1 = m_1 + (q - x_1)^d$ —		Bob computes
		t₀−k
		(= m _b)

- Alice has N values
- Bob has an index i
- Bob wants to get i-th value without Alice learning i
- Alice wants Bob to get only one value out of N

Related to private information retrieval

• Part of some databases' privacy requirement

- Alice has N values
- Bob wants to get K of those values without Alice learning which
- Alice wants Bob to get only those K values

Two possibilities:

- messages requested simultaneously (non-adaptive)
- messages requested sequentially (adaptively)
 - can depend on previous requests

The Millionaires Problem

(Andrew Yao, 1982)

Alice and Bob are both millionaires

- Alice has I million dollars
- Bob has J million dollars
- Alice and Bob both want to know who is richer
- But they don't want the other to know how much money they have
- For simplicity, assume $1 \le I, J \le 4$

(RSA-based version)

Alice generates an RSA key mod N (public e, private d)

B

J

Ι

A

(RSA-based version)

(RSA-based version)

(RSA-based version)

(RSA-based version)

Secure Multiparty Computation

Given a publicly known function F of N inputs and producing N outputs

•
$$F(x_1,...,x_n) = (y_1,...,y_n)$$

Suppose N parties, each party i with a private value a_i

- Goal: compute $F(a_1,...,a_n) = (r_1,...,r_n)$
- Each party i wants to know r_i
- No party want others to learn their private value

Secure Multiparty Computation

Oblivious Transfer as a secure multiparty computation:

- Function $F(\langle m_0, m_1 \rangle, b) = (nil, m_b)$
 - Alice has <m₀,m₁>, Bob has b
 - Bob wants m_b (don't care about what Alice wants)

Millionaires Problem as a secure multiparty computation:

• Function F(I,J) = (Alice,Alice) if I>=J

= (Bob,Bob) if I<J

- Alice has I, Bob has J
- Alice and Bob want to know who's richer

Other Examples

Statistical analyses with data stored across multiple databases

- Each database may be proprietary
- I.e., models of organic compounds across various biocompanies

Elections without a trusted third party

- Each elector gives his vote as input
- The function computed is vote tabulation (whatever it is)