The Last Few Lectures...

Secret sharing:

• How to get two or more parties to share a secret in such a way that each individual cannot recover the secret from their share

Zero-knowledge protocols:

• How to get a party to prove to another that she knows a secret without revealing that secret

Today:

• How to compute with secrets
Oblivious Transfer

Suppose Alice has two messages m_0 and m_1

- Suppose Bob has a bit b (= 0 or 1)
- Bob wants to have m_b

Constraints:
- Bob does not want Alice to know b
 - (Or, equivalently, which m_b he wants)
- Alice does not want Bob to know both m_0 and m_1
1-2 Oblivious Transfer

(RSA-based version)

Alice generates an RSA key mod N (public e, private d)

A

msgs m₀, m₁

B

bit b
1-2 Oblivious Transfer

Alice generates an RSA key mod N (public e, private d) (RSA-based version)

A
msgs m₀, m₁
random x₀, x₁

N, e, x₀, x₁

B
bit b
1-2 Oblivious Transfer

(RSA-based version)

Alice generates an RSA key mod N
(public e, private d)

Alice receives N, e, x_0, x_1 from Bob

Bob sends b to Alice

random k

$q = k^e + x_b \pmod{N}$
1-2 Oblivious Transfer

(RSA-based version)

Alice generates an RSA key mod N (public e, private d)

A
msgs m₀, m₁
random x₀, x₁

\[t₀ = m₀ + (q-x₀)^d \]
\[t₁ = m₁ + (q-x₁)^d \]

B
bit b
random k

q = \(k^e + x_b \) (mod N)
1-2 Oblivious Transfer

Alice generates an RSA key mod N (public e, private d)

Bob computes t_b-k ($= m_b$)

(A) msgs m_0, m_1
random x_0, x_1

$t_0 = m_0 + (q-x_0)^d$
$t_1 = m_1 + (q-x_1)^d$

(B) bit b
random k
$q = k^e + x_b \pmod{N}$
1-N Oblivious Transfer

• Alice has N values
• Bob has an index i
• Bob wants to get i-th value without Alice learning i
• Alice wants Bob to get only one value out of N

Related to private information retrieval

• Part of some databases’ privacy requirement
K-N Oblivious Transfer

- Alice has N values
- Bob wants to get K of those values without Alice learning which
- Alice wants Bob to get only those K values

Two possibilities:
- messages requested simultaneously (non-adaptive)
- messages requested sequentially (adaptively)
 - can depend on previous requests
The Millionaires Problem

(Area A Yao, 1982)

Alice and Bob are both millionaires

• Alice has I million dollars
• Bob has J million dollars
• Alice and Bob both want to know who is richer
• But they don’t want the other to know how much money they have
• For simplicity, assume $1 \leq I, J \leq 4$
The Protocol

(RSA-based version)

Alice generates an RSA key mod N (public e, private d)

A
I

B
J
The Protocol

(RSA-based version)

Alice generates an RSA key mod N (public e, private d)
The Protocol

Alice generates an RSA key mod N (public e, private d)

\[C = x^e \pmod{N} \]
The Protocol

(RSA-based version)

Alice generates an RSA key mod N (public e, private d)

A

I

M/2-bits random prime P

B

N, e

J

M-bits random x

C = x^e (mod N)

C-J+1 (mod N)

P, Z_1, ... Z_I,

Z_{I+1}+1, ..., Z_{4+1}
The Protocol

Alice generates an RSA key: N, public e, private d

P, random prime P

$C = x^e \pmod{N}$

$Z_1 = (C-J+1)^d \pmod{P}$

$Z_2 = (C-J+2)^d \pmod{P}$

$Z_3 = (C-J+3)^d \pmod{P}$

$Z_4 = (C-J+4)^d \pmod{P}$
The Protocol

(Alice generates an RSA key mod N) (RSA-based version)

\[N, e \]

\[C-J+1 \pmod{N} \]

\[P, Z_1, \ldots, Z_I, \]
\[Z_{I+1}+1, \ldots, Z_{4+1} \]

\[B \]

\[J \]

M-bits random \(x \)

\[C = x^e \pmod{N} \]

Bob receives

\[P, R_1, \ldots, R_4 : \]

If \(R_J = x \mod P \)

then \(I \geq J \) (o/w I < J)
Secure Multiparty Computation

Given a publicly known function F of N inputs and producing N outputs

$F(x_1,\ldots,x_n) = (y_1,\ldots,y_n)$

Suppose N parties, each party i with a private value a_i

- Goal: compute $F(a_1,\ldots,a_n) = (r_1,\ldots,r_n)$
- Each party i wants to know r_i
- No party want others to learn their private value
Secure Multiparty Computation

Oblivious Transfer as a secure multiparty computation:

- Function $F(<m_0,m_1>,b) = (\text{nil},m_b)$
 - Alice has $<m_0,m_1>$, Bob has b
 - Bob wants m_b (don’t care about what Alice wants)

Millionaires Problem as a secure multiparty computation:

- Function $F(I,J) = (\text{Alice},\text{Alice})$ if $I \geq J$
 - $= (\text{Bob},\text{Bob})$ if $I < J$
 - Alice has I, Bob has J
 - Alice and Bob want to know who’s richer
Other Examples

Statistical analyses with data stored across multiple databases

- Each database may be proprietary
- I.e., models of organic compounds across various bio-companies

Elections without a trusted third party

- Each elector gives his vote as input
- The function computed is vote tabulation (whatever it is)