The Treasure Map Problem

- Suppose you and a “friend” find a map that leads to a treasure
- You each want to go home and prepare
- Who keeps the map?
- What if you don’t trust each other?
A Real Life Solution

- Split the map in two
 - Such that you need both pieces to find the island
 - You and your friend each take a piece

- This is the basic idea of secret splitting
 - A special case of secret sharing
Secret Splitting

- **Definition**: given a secret S, we would like N parties to share the secret so that the following properties hold:

 1) All N parties can recover S

 2) Less than N parties cannot recover S

- In general, we split the secret into N pieces (shares) S_1, \ldots, S_N and give one share to each party.
Does This Work?

- Without loss of generality, we consider the secret to be a bit string or an integer.
- We know everything can be encoded as such.

- Concrete example: suppose you want to keep your salary secret, but share it between two parties. If your salary is $150,000, you could always split it as 150 and 000, and give each a piece.
- Is this a good way to split such a secret?
Partial Information Disclosure

- In the above scheme, we are leaking partial information about the secret
 - E.g., the most significant digits of the salary
- Problem for some applications (not always)
 - E.g., secret is a password
- In general, hard to characterize what kind of information should not be leaked, and which is okay to leak.
- So we want to forbid any kind of partial information disclosure
Revised Definition

- **Revised definition**: given a secret S, we would like N parties to share the secret so that the following properties hold:

1) All N parties can recover S

2) Less than N parties cannot recover S or obtain any partial information about S

- This is surprisingly easy to achieve
A Two-Party Scheme

- Suppose S is a bitstring in $\{0,1\}^m$
- Choose m bits at random (coin tosses)
- Let S_1 be those m random bits
- Let $S_2 = S \oplus S_1$

- Easy: Given S_1 and S_2, reconstruct $S = S_1 \oplus S_2$
No Partial Information Disclosure

- Given S_1 (or S_2), we do not get any partial information about S
- How can we formalize that?
- Show that given S_1, you do not restrict what S could have been. Information == restricted possibilities
- Given S_1, for any T there exists S_T such that $S_1 \oplus S_T = T$
- A share can be a share for any secret!
Suppose S is a bit string in \(\{0,1\}^m \)

- Choose m bits at random (coin tosses)
- Let \(S_1 \) be those m random bits
- Do the same for \(S_2, \ldots, S_{N-1} \) (all random)
- Let \(S_N = S \oplus S_1 \oplus \ldots \oplus S_{N-1} \)

Argument for no partial information disclosure similar to above
The Generals Problem

- You have been put in charge of designing a control mechanism for your country’s nuclear arsenal. You choose a keyed secret code mechanism:
 - To launch missiles, you need the right secret code
 - You don’t want to give every general the code
 - A rogue general might just launch an attack!
 - You decide to split the code among the generals

- What’s your new problem?
Availability

- Secret splitting ensures that the partial information about the secret is not recoverable unless you have all the shares.
- But it does not guarantee availability, that you can recover the secret even if some of the shares are unavailable.

- E.g. 2 or more generals can launch missiles.
- But less than 2 generals cannot.
(N,T) Secret Sharing

- **Definition:** Given a secret S, we would like N parties to share the secret so that the following properties hold:
 - Greater than or equal to T parties can recover S
 - Less than T parties cannot recover S or obtain any partial information about S

- Generals problem == (3,2) secret sharing
- Secret splitting == (N,N) secret sharing
Shamir’s Threshold Scheme

- To motivate the general solution, consider first an $(N,2)$ secret sharing scheme
- Secret S is an integer
Shamir's Threshold Scheme

- To motivate the general solution, consider first an \((N,2)\) secret sharing scheme
- Secret \(S\) is an integer
Shamir’s Threshold Scheme

- To motivate the general solution, consider first an \((N,2)\) secret sharing scheme.
- Secret S is an integer.
Shamir’s Threshold Scheme

- To motivate the general solution, consider first an \((N,2)\) secret sharing scheme.
- Secret \(S\) is an integer.
Shamir’s Threshold Scheme

- To motivate the general solution, consider first an $(N,2)$ secret sharing scheme.
- Secret S is an integer.

Easy to check: any two points can be used to recover the line and hence $(0,S)$.

A single point is not enough.
Generalizing to \((N,T)\)

- A line intersecting the \(y\) axis = degree 1 polynomial \([y = a_1x + a_0]\)
- Line uniquely characterized by two points
- Once you know the line, you can compute where it crosses the \(y\) axis.

- Generalize to \((N,T)\) threshold schemes
 - Use a degree \(T-1\) polynomial \([y = a_{T-1}x^{T-1} + \ldots + a_1x + a_0]\)
 - Curve uniquely characterized by \(T\) points
 - Once you know the curve, you can compute where it crosses the \(y\) axis
Resharing the Secret

- This can be useful when the secret needs to be kept for a long time.
- The longer a secret needs to be kept, the more likely the adversary is to get enough shares.
- The Shamir threshold scheme admits resharing the secret without computing that secret.
Generating New Shares

- Again, let’s consider the (N,2) case
- Secret S is an integer
Generating New Shares

- Again, let's consider the \((N,2)\) case
- Secret \(S\) is an integer
Generating New Shares

• Again, let's consider the (N,2) case
• Secret S is an integer
Generating New Shares

- Again, let's consider the \((N,2)\) case
- Secret \(S\) is an integer
Generating New Shares

- Again, let's consider the \((N, 2)\) case
- Secret \(S\) is an integer
• Again, let’s consider the \((N,2)\) case.

• Secret \(S\) is an integer in \([0,S]\).

A central server wanting to reshare the secret would send \(h(x_1)\) to party 1, ..., \(h(x_n)\) to party \(n\).

Each party would compute their new share \((x_i,f(x_i)+h(x_i))\).
Generating New Shares

- Again, let's consider the (N,2) case
- Secret S is an integer

Generalizes trivially to (N,T) sharing

Pick a degree T polynomial through (0,0)
Suppose you want an even more general way of sharing secrets

- N parties, and you specify exactly what subsets of parties can get the secret

- E.g. Bob and Alice can get together and reconstruct the secret, Bob and Charlie can get together and reconstruct the secret, but no one else
Access Structure

• An access structure for a set P of parties is a set AS of subsets of P

• $B \in AS$ is called an authorized subset

• Access control structures are monotone:
 • If $B \in AS$ and $B \subseteq C \subseteq P$, then $C \in AS$
 • We often only list the “minimal” elements: the sets $B \in AS$ such that there is no $C \in AS$ with $C \subset B$
Perfect Secret Sharing Scheme for AS

Definition: A perfect secret sharing scheme realizing the access structure AS is a method of sharing a secret S among a set P of parties such that:

1) Any authorized subset of AS can recover S
2) No unauthorized subset can recover S or obtain any partial information about S
Threshold Access Structures

- Let P be a set of N parties
 - Take $AS = \{ B \subseteq P : |B| \geq T \}$
 - This is called a threshold access structure

- A (N,T) secret sharing scheme == a perfect secret sharing scheme realizing a threshold access structure
Secret Sharing Scheme for AS

- Given an access structure AS, we want a perfect secret sharing scheme realizing AS
- We use a Boolean circuit corresponding to AS
- And a secret-splitting scheme
 - e.g., the \oplus-based scheme
Boolean Circuit for AS

- Inputs to the circuit:
 - a wire for every element of P
- Output of the circuit:
 - whether the set of elements that are given a 1 on input is a member of AS
- Can be constructed from the “minimal elements” of AS
Example Circuit

- \(P = \{ P_1, P_2, P_3, P_4 \} \)
- AS with min elts \(\{ \{ P_1, P_2, P_4 \}, \{ P_1, P_3, P_4 \}, \{ P_2, P_3 \} \} \)
The Scheme

- Given a secret S as a bitstring in $\{0,1\}^m$
- First set output wire of circuit to be S
The Scheme

- Then duplicate secret back through a \lor node
The Scheme

- For every \land node, do a (T,T) secret-splitting of the output of the node among the inputs of the node.
The Scheme

• For every \land node, do a (T,T) secret-splitting of the output of the node among the inputs of the node.
The Scheme

- For every \land node, do a (T,T) secret-splitting of the output of the node among the inputs of the node.
The Scheme

- For every \land node, do a (T,T) secret-splitting of the output of the node among the inputs of the node
The Scheme

- Give the appropriate shares to each party by looking at the wires out of that party.
• Give the appropriate shares to each party by looking at the wires out of that party

\[P_1 \text{ gets } \{ a_1, c_1 \} \quad P_2 \text{ gets } \{ a_2, b_1 \} \]
\[P_3 \text{ gets } \{ S \oplus b_1, c_2 \} \quad P_4 \text{ gets } \{ S \oplus a_1 \oplus a_2, S \oplus c_1 \oplus c_2 \} \]
The Scheme

- Give the appropriate shares to each party by looking at the wires out of that party

CHECK: This is a perfect secret sharing scheme
The Scheme

• Give the appropriate shares to each party by looking at the wires out of that party

P_1 gets \{ a_1, c_1 \}
P_2 gets \{ a_2, b_1 \}
P_3 gets \{ S \oplus b_1, c_2 \}
P_4 gets \{ S \oplus a_1 \oplus a_2, S \oplus c_1 \oplus c_2 \}

CHECK: This is a perfect secret sharing scheme
The Scheme

- Give the appropriate shares to each party by looking at the wires out of that party

\[P_1 \text{ gets } \{ a_1, c_1 \} \]
\[P_2 \text{ gets } \{ a_2, b_1 \} \]
\[P_3 \text{ gets } \{ S \oplus b_1, c_2 \} \]
\[P_4 \text{ gets } \{ S \oplus a_1 \oplus a_2, S \oplus c_1 \oplus c_2 \} \]

CHECK: This is a perfect secret sharing scheme