
Hash Functions

CS 6750     Lecture 5

October 8, 2009

Riccardo Pucella



Hash Functions

Hash functions provide assurance of data integrity
A different property than secrecy

Idea: construct a short fingerprint of a message
Often called a message digest (or a hash)
Size the same for all messages, e.g., 160 bits



Typical Usage Scenario
Hash function h(x)

produces digest for message x

Given message x:
compute h(x) and store in safe place

At a later time, check if message still has same digest
If not, message was tampered with

possibly network error
or an attacker messed with it

Why do you need to keep h(x) safe?
otherwise, whomever modified the message could 
modify the digest accordingly



Keyed Hash Functions

Really, a family of hash functions indexed by a key

Scenario:
Alice and Bob share a key K
Alice wants to send x, computes y = hk(x)
Alice sends (x,y)
Bob receives it and checks that hk(x) = y
If not, x or y was tampered with

(Or there was a network error)



Formal Definition
A hash family is a tuple (X,Y,K,H) where

X is a set of possible messages (could be infinite)
Y is a finite set of possible digests
K is a finite set of possible keys (the keyspace)
For each key k∈K, there is a hash function
      hk : X ➞ Y  in H

A pair (x,y) is called a valid pair under key k if
         hk(x) = y

A unkeyed hash function can be modeled as a hash 
family with a single globally known fixed key k



Security for Unkeyed Hash Functions
Suppose h : X ➞ Y is an unkeyed hash function

The following three problems should be difficult to 
solve if the has function is to be considered secure

Preimage Problem: 
   given y∈Y, find x∈X such that h(x)=y

Second Preimage Problem: 
   given x∈X, find x’∈X such that x≠x’ and h(x)=h

(x’)
Collision Problem: 
   find x,x’∈X such that x≠x’ and h(x)=h(x’)



The Random Oracle Model
What is the best we can do for the above problems?

Suppose we had a “perfect hash function”
The random oracle model is a mathematical model of a 
perfect hash function

Intuition behind a perfect hash function:
we should not be able to extract any information 
from how a hash function computes the hash

In the random oracle model, a hash function h : X ➞ Y 
is chosen at random, and we are only permitted oracle 
access to h

We cannot see how h is implement
We can only ask: what’s h(x)?



Main Theorem
Let M = |Y|

Theorem: Suppose h : X ➞ Y is chosen randomly. Let 
X0 ⊆ X. Suppose h(x) are known for all x ∈ X0. Then 

Pr[h(x)=y] = 1/M for all x ∈ X-X0 and all y ∈ Y.

I.e., even if we query the oracle for some valid pairs, 
given a message x not part of the queries, the 
probability that the hash of x is a particular digest y 
is the same for all digests

We do not gain any information about the function 
h even if we have a set of valid pairs



Preimage Problem

This algorithm is essentially the best we can do

Let Q be the number of queries we allow
Let y be a digest for which we want a preimage

Choose Q messages at random
For each chosen message x, compute h(x)
If one of the h(x) is y, return x; otherwise fail.

The probability that this algo reports a good x given a 
random digest y of interest is 1-(1-1/M)Q

If Q is much smaller than M, this is ~Q/M



Second Preimage Problem

Again, this algorithm is essentially the best we can do

Let Q be the number of queries we allow
Let x be a message for which we want a 2nd preimage

Choose Q messages at random (none of them x)
For each chosen message x’, compute h(x’)
If one of the h(x’) is h(x), return x’; otherwise fail

Again, the probability that this returns some x’ is
1-(1-1/M)Q

If Q is much smaller than M, this is ~Q/M



Collision Problem

Again, this algorithm is essentially the best we can do

Let Q be the number of queries we allow
Choose Q messages at random
For each chosen message x, compute yx = h(x)
If any two yx and yx’ are equal, return (x,x’); 
otherwise, fail

The probability that we get a pair (x,x’) is 
  1 - ((M-1)/M) ((M-2)/M) ... ((M-Q+1)/M)
which is about 1 - e-Q(Q-1)/2M



Collision Problem

Again, this algorithm is essentially the best we can do

Let Q be the number of queries we allow
Choose Q messages at random
For each chosen message x, compute yx = h(x)
If any two yx and yx’ are equal, return (x,x’); 
otherwise, fail

The probability that we get a pair (x,x’) is 
  1 - ((M-1)/M) ((M-2)/M) ... ((M-Q+1)/M)
which is about 1 - e-Q(Q-1)/2M

If we want a collision with 
probability 1/2, need Q to be 

about √M



Conclusions
For a perfect hash function, to be secure, we need a 
large M

In an ideal situation

In practice, hash functions are not perfect, but we 
still need a large M

Note that
Collision resistance implies second-preimage 
resistance
Collision resistance implies preimage resistance
(under some conditions)



Secure Hash Algorithm 
SHA-1 algorithm of Rivest

A finite-domain hash function that can hash 
messages of length up to 264-1 bits. 
Outputs a digest of 160 bits

Series of hash functions
MD4 (1990)
MD5 (1992)
SHA-0 (1993)
SHA-1 (1995)
SHA-2 (2001) -- similar to SHA-1 but with different
                    digest lengths



Iterated Hash Functions

A method to extend a hash function on a finite domain 
to an infinite domain

For simplicity, consider bit strings as inputs/outputs

Notation:
|x| = length of bit string x
x || y = concatenation of bit strings x and y



Iterated Hash Functions
Given compress : {0,1}m+t ➞ {0,1}m

a hash function over a finite domain (compression)
we construct h : (∪i>m+t {0,1}i) ➞ {0,1}l, for some l

Preprocessing:
given x with |x| > m+t, construct y such that 
    |y| ≡ 0 (mod t)

e.g., using a padding function, y = x || pad(x)
Make sure map from x to y is injective (otherwise, 
collisions)
Split y into y1 || ... || yr   where |yi| = t for all i



Iterated Hash Functions
Processing:

Let IV be some public initial value, |IV| = m

z0 ← IV
z1 ← compress(z0 || y1)
z2 ← compress(z1 || y2)
...
zr ← compress(zr-1 || yr)

Output transformation:
Apply a public g : {0,1}m ➞ {0,1}l
Can take g to be the identify function, and l=m



Markle-Damgard Construction

A way to construct an iterated hash function h with 
good properties from a compress hash function with 
good properties

If compress is collision resistant, then h is collision 
resistant

Given compress : {0,1}m+t ➞ {0,1}m
a hash function over a finite domain (compression)
we construct h : (∪i>m+t {0,1}i) ➞ {0,1}l, for some l



Markle-Damgard Construction

Suppose t > 1
Let x ∈ (∪i>m+t {0,1}i) , split x into x1 || ... || xk

|x1| = ... = |xk-1| = t-1
|xk| = t-1-d

Set y1 = x1, ..., yk-1 = xk-1

Set yk = xk || 0d       (Note: |yk| = t-1)
Set yk+1 = binary representation of d padded on the 
left with 0s to size t-1



Markle-Damgard Construction

Processing:
z1 ← compress(0m+1 || y1)
z2 ← compress(z1 || 1 || y2)
z3 ← compress(z2 || 1 || y3)
...
zk+1 ← compress(zk || 1 || yk+1)

Result of the hash function h(x) is zk+1



Keyed Hash Functions

A common way to create keyed hash functions

incorporate a secret key into an unkeyed hash 
function by including the key as part of the 
message to be hashed.

If one is not careful, this can be easy to break
The adversary may be able to create a keyed hash 
with the same key, but without knowing the key



Example
Suppose you use an iterated hash function
Suppose you use the key as initial value IV
Suppose no pre- or post-processing steps
Let |x| ≡ 0 (mod t)

|k| = m
Given x and hk(x), the adversary can produce hk(xalt) 
for some other xalt

Let x’ be a message with |x’| = t
Take the message x || x’ (this will be xalt)
hk(xalt) = hk(x || x’) = ... = compress(hk(x) || x’)
Since hk(x) and x’ are known, can compute hk(xalt)

Without knowing k



Message Authentication Codes

A keyed hash function is often used as a message 
authentication code (MAC)

A MAC can be happended to a sequence of plaintext 
blocks
Used to convince receiver that the given plaintext 
originated with Alice and was not tampered with
This is the original scenario that I gave at the 
beginning of lecture



Common Ways to Create MAC (1)
HMAC (keyed-Hash Message Authentication Code)

Construct MAC from an unkeyed hash function
Example based on SHA-1, with key size 512 bits:

ipad = 512 bits constant 0x363636..36
opad = 512 bits constant 0x5c5c5c..5c

   T = SHA1((k⊕ipad) || x)

   HMACk(x) = SHA1((k⊕opad) || T)

(A form of nested MAC, with two keyed hashes)



Common Ways to Create MAC (2)
CBC-MAC

Use a block cipher in CBC mode
Any endomorphic block cipher with P=C={0,1}t

Let x = x1 || ... || xn   
   where |xi| = t for each i

Compute CBC encryption
with key k
Keep yn as MAC

x1 x2

y2

ek

y1

ek

y0=IV

+ +

...


