Hash Functions

CS 6750 Lecture 5
October 8, 2009

Riccardo Pucella

Hash Functions

@ Hash functions provide assurance of data integrity
@ A different property than secrecy

@ Idea: construct a short fingerprint of a message
@ Often called a message digest (or a hash)
@ Size the same for all messages, e.g., 160 bits

Typical Usage Scenario

@ Hash function h(x)
@ produces digest for message x

@ Given message X:

@ compute h(x) and store in safe place
@ At a later time, check if message still has same digest
@ If not, message was tampered with

@ possibly network error

@ or an attacker messed with it

@ Why do you need to keep h(x) safe?
@ otherwise, whomever modified the message could
modify the digest accordingly

Keyed Hash Functions

@ Really, a family of hash functions indexed by a key

@ Scenario:
@ Alice and Bob share a key K
@ Alice wants to send x, computes y = hi(x)
@ Alice sends (x,y)
@ Bob receives it and checks that h(x) = v
@ If not, x or y was tampered with
@ (Or there was a network error)

Formal Definition

@ A hash family is a tuple (X,Y,K,H) where

@ X is a set of possible messages (could be infinite)
@ Y is a finite set of possible digests

@ K is a finite set of possible keys (the keyspace)
@ For each key keK, there is a hash function

hg : X=»Y inH

@ A pair (x,y) is called a valid pair under key k if
hk(x) = v

@ A unkeyed hash function can be modeled as a hash
family with a single globally known fixed key k

Security for Unkeyed Hash Functions

® Suppose h : X =» Y is an unkeyed hash function

@ The following three problems should be difficult to
solve if the has function is to be considered secure

@ Preimage Problem:
given yeY, find xeX such that h(x)=y

@ Second Preimage Problem:
given xeX, find x'eX such that x#x’ and h(x)=h

(x")
@ Collision Problem:
find x,x’eX such that x#x’ and h(x)=h(x’)

The Random Oracle Model

@ What is the best we can do for the above problems?
@ Suppose we had a “perfect hash function”
® The random oracle model is a mathematical model of a
perfect hash function

@ Intuition behind a perfect hash function:
@ we should not be able to extract any information
from how a hash function computes the hash

@ In the random oracle model, a hash function h : X =Y
Is chosen at random, and we are only permitted oracle
access to h
@ We cannot see how h is implement
@ We can only ask: what's h(x)?

Main Theorem
o Let M = |Y]

® Theorem: Suppose h : X =» Y is chosen randomly. Let
Xo S X. Suppose h(x) are known for all x € Xo. Then

Prlh(x)=y] = 1/M for all x € X-Xo and all y €.

@ L.e., even if we query the oracle for some valid pairs,
given a message x not part of the queries, the
probability that the hash of x is a particular digest vy
is the same for all digests
@ We do not gain any information about the function

h even if we have a set of valid pairs

Preimage Problem

@ This algorithm is essentially the best we can do

® Let Q be the number of queries we allow

@ Let y be a digest for which we want a preimage
@ Choose Q messages at random
@ For each chosen message X, compute h(x)
@ If one of the h(x) is vy, return x; otherwise fail.

@ The probability that this algo reports a good x given a
random digest y of interest is 1-(1-1/M)2
@ If Q is much smaller than M, this is ~Q/M

Second Preimage Problem

@ Again, this algorithm is essentially the best we can do

® Let Q be the number of queries we allow

@ Let x be a message for which we want a 2nd preimage
@ Choose Q messages at random (none of them x)
@ For each chosen message x’, compute h(x’)
@ If one of the h(x’) is h(x), return x’; otherwise fail

@ Again, the probability that this returns some x’ is
1-(1-1/M)Q
@ If Q is much smaller than M, this is ~Q/M

Collision Problem

@ Again, this algorithm is essentially the best we can do

® Let Q be the number of queries we allow
@ Choose Q messages at random
@ For each chosen message X, compute yy = h(x)
o If any two yx and yyx are equal, return (x,x’);
otherwise, fail

@ The probability that we get a pair (x,x’) is
1 - ((M-1)/M) ((M-2)/M) ... ((M-Q+1)/M)
which is about 1 - e-Q@-1)/2M

Collision Problem

@ Again, this algorig we can do

el Y If we want a collision with
“Welae e probability 1/2, need Q to be

® For each c
@ If any two vy
otherwise, 4

@ The probability that we get a pair (x,x’) is
1 - (M-1)/M) ((M-2)/M) ... ((M-Q+1)/M)
which is about 1 - e Q@1/2M

Conclusions

@ For a perfect hash function, to be secure, we need a
large M
@ In an ideal situation

@ In practice, hash functions are not perfect, but we
still need a large M

@ Note that
@ Collision resistance implies second-preimage
resistance
@ Collision resistance implies preimage resistance
(under some conditions)

Secure Hash Algorithm

® SHA-1 algorithm of Rivest
@ A finite-domain hash function that can hash

messages of length up to 2°%-1 bits.
@ Outputs a digest of 160 bits

@ Series of hash functions
@ MD4 (1990)
@ MD5 (1992)

@S
@S
@S

A-0 (1993)
A-1 (1995)

A-2 (2001) -- similar to SHA-1 but with different
digest lengths

Iterated Hash Functions

® A method to extend a hash function on a finite domain
to an infinite domain
@ For simplicity, consider bit strings as inputs/outputs

@ Notation:
@ |x| = length of bit string x
@ x || y = concatenation of bit strings x and vy

Iterated Hash Functions

@ Given compress : {0,1}™" = {0,1}™
@ a hash function over a finite domain (compression)
@ we construct h : (Uismet 10,1}) =» $0,1}!, for some |

@ Preprocessing:
@ given x with |x| > m+t, construct y such that
Iyl = 0 (mod t)

@ e.g., using a padding function, y = x || pad(x)

® Make sure map from x to vy is injective (otherwise,
collisions)

o Split yinto yi Il ... [l yv where lyil = t for all |

Iterated Hash Functions

@ Processing:
@ Let IV be some public initial value, |IV] = m

Zo «— 1V
z; — compress(zo |l y1)
z, — compress(z: || v2)

z. + compress(zr. || yr)

@ Output transformation:
@ Apply a public g : {0,1}™ =» {0,1}'
@ Can take g to be the identify function, and |=m

Markle-Damgard Construction

@ A way to construct an iterated hash function h with

good properties from a compress hash function with
good properties

@ If compress is collision resistant, then h is collision
resistant

@ Given compress : {0,1}™" = {0,1}m
@ a hash function over a finite domain (compression)
@ we construct h : (Uismst 10,1}) =» $0,1}!, for some |

Markle-Damgard Construction

@ Suppose t > 1

@ Let x € (Uismst $0,1}) , split x into x1 Il ... Il x«
@ Ixi| = ... = Ixkal = t-1
@ |xkl = +-1-d

@ Set Y1 = X1, ooy Yk-1 = Xk-1
@ Set vk = xk || 0¢ (Note: Iyl = 1-1)

@ Set Y. = binary representation of d padded on the
left with Os fo size -1

Markle-Damgard Construction

@ Processing:
@ z; + compress(0™! || yi)
@ z, + compress(zi Il 1 |l y2)

@ z3 — compress(zz |l 1 [l ys)
o ..

@ 2,1 — compress(zi || 1 1l yis1)

® Result of the hash function h(x) is zksi

Keyed Hash Functions

@ A common way to create keyed hash functions

@ incorporate a secret key intfo an unkeyed hash
function by including the key as part of the
message to be hashed.

@ If one is not careful, this can be easy to break
@ The adversary may be able fto create a keyed hash
with the same key, but without knowing the key

Example

@ Suppose you use an iterated hash function
@ Suppose you use the key as initial value IV
@ Suppose no pre- or post-processing steps
@ Let |x] = 0 (mod t)

o |kl = m
@ Given x and h(x), the adversary can produce hk(Xait)
for some other Xxq
@ Let x’ be a message with |x'| = t
@ Take the message x || x’ (this will be Xa+)

@ hi(xat) = h(x Il X°) = ... = compress(hk(x) Il x’)
@ Since hk(x) and x° are known, can compute hi(Xqt)
@ Without knowing k

Message Authentication Codes

@ A keyed hash function is often used as a message
authentication code (MAC)

@ A MAC can be happended to a sequence of plaintext
blocks

@ Used to convince receiver that the given plaintext
originated with Alice and was not tampered with

@ This is the original scenario that I gave at the
beginning of lecture

Common Ways to Create MAC (1)

@ HMAC (keyed-Hash Message Authentication Code)

@ Construct MAC from an unkeyed hash function
@ Example based on SHA-1, with key size 512 bits:

@ ipad = 512 bits constant 0x363636..36
@ opad = 512 bits constant Ox5c5c5c..5¢

T = SHAL((k®Pipad) || x)
HMACK(x) = SHAL((k®opad) || T)

@ (A form of nested MAC, with two keyed hashes)

Common Ways to Create MAC (2)

@ CBC-MAC
@ Use a block cipher in CBC mode
@ Any endomorphic block cipher with P=C={0,1}
o Let x = x|l ... |l xx
where [xi| = t for each i

@ Compute CBC encryption |
with key k ‘
|

@ Keep yn as MAC

A)

|

l
o
lex

l

- B

