
Object-Oriented Design Lecture 24
CS 3500 Spring 2011 (Pucella) Tuesday, Apr 12, 2011

24 Architectural Pattern: Model-View-Controller

Let’s look at another architectural pattern. Recall, from our lecture on the Publisher-
Subscriber pattern, that architectural patterns pertain to the structuring of an application
as a whole. Such patterns are useful to figure out where to start when implementing an
application.

The Model-View-Controller (MVC for short) pattern goes back to the 70s, in the Smalltalk
community. The idea of the MVC pattern is to separate the following aspects of an applica-
tion:

• the model : capturing the state of an application and its internal logic dictating how
its state changes when actions are performed;

• the controller : capturing how the model is informed of actions that are performed
(generally, this is driven by input from the user);

• the view : capturing how the application displays its results to the user.

Why might we want to do that? This decoupling is useful for modern applications which
have sometimes specific requirements:

• they may need to work on multiple platforms or operating systems — in which case
the model is usually the same, but the details of how to get the view working for a
particular operating system may be different, or how to get input from the user; even
in the case of a single operating system, we may want an application to have a view
that suitable for a mobile phone, and a view suitable for a desktop.

• they may require different models based on the size of data they operate on, or where
they store their data (for instance, there may be a need to backup the application
state for server application, requiring a different model than one for which the state is
completely in memory.)

• they may need to work on the web, there the view (generally HTML code rendered in
the browser) can change pretty drastically based on other requirements.

The interaction between the three components is slightly different depending on the appli-
cation and who you talk to, but a first approximation can be captured by the following
diagram:

310

+------------+
+----->| MODEL |----+
| +------------+ |

action | | | update
| | feedback |
| v v

+----------------+ +--------+
| CONTROLLER | | VIEW |
+----------------+ +--------+

Roughly, the controller is in charge of directing the model by invoking actions, and the
model informs the view when the state has changed so that the view can update its display
(thus, the view is really a subscriber of the model). Often, the model sends feedback to the
controller, because changes in the state of the application may change the possibilities open
to the controller in terms of what actions can be performed.

24.1 An Example: A Maze Game

The best way to illustrate an architectural pattern is to give a sample application imple-
mented using the pattern. The example I have is a simple maze game. The code for it is
available on the website, and I’ll just give the highlights here.

The game: you’re in a maze, and you have the find the exit. Movement in the maze involves
moving forward, moving back, turning left, and turning right. For simplicity, we’ll consider
a model of the maze where the maze is on a square grid, movement back and forth is done
one square at a time, and the directions one can be facing are one of north, east, south, or
west.

Let’s first describe the interfaces capturing the functionality of the model, the controller,
and the view for the Maze game.! "
trait Model {
def performLeft ():Boolean
def performRight ():Boolean
def performForward ():Boolean
def performBack ():Boolean

}# $
Basically, a model can respond to request to perform actions “turn left”, “turn right”, “move
forward”, and “move backwards” applied to the player’s position and direction. When we
create a model, we will supply it with a view and a controller, so that it can interact with
them.

311

! "
trait Controller {

def attachToModel (m:Model):Unit
def run ():Unit

}# $
A controller, on the other hand, once created, can either be attached to a model (when the
model is created, it will generally attach itself to the controller it is passed as an argument
— see below — we need to do this kind of convolution because there is a dependency going
both ways between a model and a controller, which both need to know about each other),
or it can be “run”, meaning that it starts controlling the model.! "
trait View {

def attachToModel (m:Model):Unit
def update (vis:Visible):Unit
def win ():Unit

}# $
A view, just like a controller, can be attached to a model (and for the same reasons), and
it can updated (to display the current position of the player and presumably what he or she
sees), or it can be told that the game is won, in order to congratulate the player. To ensure
that the update does not depend too much on the details of the implementation of the model,
we use an interface Visible to abstract away the information that the model sends to the
view about what the player sees. For simplicity, I defined Visible to be a set of predicates
that lets the view ask about what openings are visible in the current square (to the left, to
the right, to the front), which openings are visible one square in front of the player, if visible
(to the front left, to the front right, to the front front), and one square beyond, if visible
(to the front front left, to the front front right, to the front front front). The view can also
query for whether the square in front or the one beyond is a winning square.! "
trait Visible {
def direction ():Direction

def left ():Boolean
def right ():Boolean
def front ():Boolean
def frontleft ():Boolean
def frontright ():Boolean
def frontfront ():Boolean
def frontfrontleft ():Boolean
def frontfrontright ():Boolean
def frontfrontfront ():Boolean

def frontwin ():Boolean

312

def frontfrontwin ():Boolean
}# $

And that’s it. That defines the interactions between the model, the controller, and the view,
in the context of the Maze game. Everything else is filling in the details.

We have interface, now we need implementations for those interfaces. First, let’s define the
basic model for the maze, which represents the maze as a set of connected cells, where each
cell can be connected to up to four other cells, one in each of the four cardinal directions.! "
class BasicModel (view:View, controller:Controller) extends Model {

/* The current position of the player in the maze */
private var cell:Cell = initializeMaze()

/* The current direction faced by the player in the maze */
private var direction:Direction = Direction.NORTH

// constructor
view.attachToModel(this)
controller.attachToModel(this)
// initial display of information
updateView()

private class BasicVisible (d:Direction,
l:Boolean,r:Boolean,f:Boolean,
fl:Boolean,fr:Boolean,ff:Boolean,
ffl:Boolean,ffr:Boolean,fff:Boolean,
fw:Boolean,ffw:Boolean) extends Visible {

def direction ():Direction = d
def left ():Boolean = l
def right ():Boolean = r
def front ():Boolean = f
def frontleft ():Boolean = fl
def frontright ():Boolean = fr
def frontfront ():Boolean = ff
def frontfrontleft ():Boolean = ffl
def frontfrontright ():Boolean = ffr
def frontfrontfront ():Boolean = fff
def frontwin ():Boolean = fw

313

def frontfrontwin ():Boolean = ffw
}

def isOpening (oc:Option[Cell]):Boolean = !(oc.isNone())

def updateView ():Unit = {
val l = isOpening(cell.exit(direction.left()))
val r = isOpening(cell.exit(direction.right()))
val front = cell.exit(direction)
if (!isOpening(front)) {
view.update(new BasicVisible(direction,l,r,false,false,false,false,

false,false,false,false,false))
return

}
val fl = isOpening(front.valOf().exit(direction.left()))
val fr = isOpening(front.valOf().exit(direction.right()))
val ffront = front.valOf().exit(direction)
val fwin = front.valOf().isWin()
if (!isOpening(ffront)) {
view.update(new BasicVisible(direction,l,r,true,fl,fr,false,

false,false,false,fwin,false))
return

}
val ffl = isOpening(ffront.valOf().exit(direction.left()))
val ffr = isOpening(ffront.valOf().exit(direction.right()))
val fffront = ffront.valOf().exit(direction)
val ffwin = ffront.valOf().isWin()
view.update(new BasicVisible(direction,l,r,true,fl,fr,true,

ffl,ffr,isOpening(fffront),
fwin,ffwin))

return
}

private def initializeMaze ():Cell = {

val cells:Array[Cell] = new Array[Cell](8)

// create cells
for (i <- 0 to 7)
cells(i) = new Cell

val wincell = new WinCell

314

// connect cells
cells(0).connect(Direction.SOUTH,cells(1))
cells(1).connect(Direction.SOUTH,cells(2))
cells(2).connect(Direction.EAST,cells(3))
cells(3).connect(Direction.EAST,cells(4))
cells(4).connect(Direction.NORTH,cells(5))
cells(5).connect(Direction.NORTH,cells(6))
cells(6).connect(Direction.WEST,cells(7))
cells(7).connect(Direction.WEST,cells(0))

cells(4).connect(Direction.SOUTH,wincell)

// choose starting cell
cells(0)

}

def performLeft ():Boolean = {
direction=direction.left()
updateView()
true

}

def performRight ():Boolean = {
direction=direction.right()
updateView()
true

}

def performForward ():Boolean = {
val res = cell.exit(direction)
if (res.isNone())
false

else {
cell=res.valOf()
updateView()
if (cell.isWin())
view.win()

true
}

}

315

def performBack ():Boolean = {
val res = cell.exit(direction.opposite())
if (res.isNone())
false

else {
cell=res.valOf()
updateView()
if (cell.isWin())
view.win()

true
}

}
}# $

Private fields hold the view and controller the model is connected to, as well as a Cell
holding the current position of the player in the maze, as well as the direction the player is
facing. Directions are implemented as a form of enumerations. If you know Java enumeration
types, then you should know that Scala doesn’t have them. It has a few different ways of
doing enumerations, though, and this below is just one of them, using case classes — see
the Scala documentation for more information.! "
sealed abstract class Direction {
def left ():Direction
def right ():Direction
def opposite ():Direction
def ordinal ():Int

}

object Direction {

case object NORTH extends Direction {
def left ():Direction = WEST
def right ():Direction = EAST
def opposite ():Direction = SOUTH
def ordinal ():Int = 0

}

case object SOUTH extends Direction {
def left ():Direction = EAST
def right ():Direction = WEST
def opposite ():Direction = NORTH
def ordinal ():Int = 2

316

}

case object EAST extends Direction {
def left ():Direction = NORTH
def right ():Direction = SOUTH
def opposite ():Direction = WEST
def ordinal ():Int = 1

}

case object WEST extends Direction {
def left ():Direction = SOUTH
def right ():Direction = NORTH
def opposite ():Direction = EAST
def ordinal ():Int = 3

}
}# $

Intuitively, there are four objects subtyping Description, NORTH, SOUTH, EAST, and WEST,
and there are four methods defined for those objects: left(), right(), opposite(), that
gives us the direction 90 degrees counter-clockwise, 90 degrees clockwise, and 180 degrees
from the direction these methods are applied to, and ordinal() converting the direction to
a number.

Back to BasicModel: the constructor of the class attaches the created instance to the view
and to the controller, after having initialized the maze — basically creating and connecting
the cells making up the maze, which also sets the starting cell and the starting direction —
and then calls helper method updateView() that will give the first rendering to the player.
That method takes the current cell and the cells in the direction the player is facing and
uses that information to create an instance of BasicVisible, which is a class implementing
the Visible interface, and that can be passed to the view for displaying purposes.

Operations performLeft(), performRight(), performForward(), and performBack() up-
date the position or direction of the player, updating the view after every action.

I will not say much about cells, except to give their signature (the code is on the website):! "
def connect (d:Direction, c:Cell):Unit
def exit (d:Direction d):Option[Cell]
def isWin ():Boolean# $

Once created, a cell is not connected to any other cell. Calling connect(d,c) mutates the
cell so that its exit in the d direction leads to cell c — this also has the effect of mutating cell
c so that its exit in the d.opposite() direction leads to the original cell. To get the exit of
a cell in a particular direction d, call exit(d) — the result is either none() if there is no exit
in that direction (i.e., it is a wall), or some(c) where c is the cell that the direction leads to.

317

Method isWin() checks whether the cell is a winning cell. (Winning cells are implemented
as a subclass of cells.)

So this essentially takes care of the model. What we’re missing is a controller and a view.
First, the controller. I’m going to describe a simple controller here, driven by commands
from the player that he or she types at a simple command line.! "
class TextController extends Controller {

private var maze:Option[Model] = Option.none()

def attachToModel (m:Model):Unit =
maze = Option.some(m)

private def process (response:String):Boolean =
if (response=="forward" || response=="f")
maze.valOf().performForward()

else if (response=="back" || response=="b")
maze.valOf().performBack()

else if (response=="left" || response=="l")
maze.valOf().performLeft()

else if (response=="right" || response=="r")
maze.valOf().performRight()

else if (response=="quit" || response=="q") {
System.exit(0)
true

}
else
false

def run ():Unit = {
if (maze.isNone())
throw new Error("TextController not initialized with model")

while (true) {
print("> ")
val response = readLine()
if (!process(response))
println("Cannot perform action")

}
}

}# $

318

Nothing really special here, it is similar to other command loops we have played with in
the last few lectures. The thing is that when a response is recognized as a command,
the appropriate method from the model is called, from that model that is attached to the
controller.

So the controller sends actions to the model, which invokes a view to display results to the
player. Here is a simple view, that textually describes what the player sees in his immediate
vicinity:! "
class TextView extends View {

private var maze:Option[Model] = Option.none()

def attachToModel (m:Model):Unit =
maze = Option.some(m)

private def status (b:Boolean):String =
if (b)
"open"

else
"blocked"

def update (vis:Visible):Unit = {
println("Facing: " + vis.direction())
println("Passage in front is " + status(vis.front()))
println("Passage on left is " + status(vis.left()))
println("Passage on right is " + status(vis.right()))
if (vis.frontwin())
println("Winning square is up front")

}

def win ():Unit = {
println("You won")
System.exit(0)

}
}# $

It is pretty much self-explanatory.

Now that we have all the components of the application, we can connect them together to
create the Maze game with textual input and output:! "
object MainText {

def main (argv:Array[String]):Unit = {

319

val v = new TextView
val c = new TextController
val m = new BasicModel(v,c)

c.run()
}

}# $
And that’s it. Running it gives:

Facing: NORTH
Passage in front is blocked
Passage on left is blocked
Passage on right is open
> r
Facing: EAST
Passage in front is open
Passage on left is blocked
Passage on right is open
> f
Facing: EAST
Passage in front is open
Passage on left is blocked
Passage on right is blocked
> f
Facing: EAST
Passage in front is blocked
Passage on left is blocked
Passage on right is open
> r
Facing: SOUTH
Passage in front is open
Passage on left is blocked
Passage on right is open
> f
Facing: SOUTH
Passage in front is open
Passage on left is blocked
Passage on right is blocked
> f
Facing: SOUTH

320

Passage in front is open
Passage on left is blocked
Passage on right is open
Winning square is up front
> f
Facing: SOUTH
Passage in front is blocked
Passage on left is blocked
Passage on right is blocked
You won

What’s more exciting is that we can change the view or the controller, and get different
variants of the game. I won’t show it here, but in the code I give on the website is a different
view, the GUIView, which displays what the player sees as a 3D-ish rendering. Creating a
version of the Maze game with that view is a simple matter of using:! "
object MainGUI {

def main (argv:Array[String]):Unit = {

val v = new GUIView
val c = new GUIController
val m = new BasicModel(v,c)

c.run()
}

}# $
Very little change, but the game feels quite different. Even more so if we replace the
TextController by one that can recognize key strokes in the display window, such as the
GUIController I give on the website. Have a look, although to be honest the GUI code is
somewhat clunky, and does not scale well. Nevertheless, it illustrates my point.

Finally, we can play interesting games with views. Here is a special view that multiplexes
updates to two sub-views:! "
class DualView (view1:View, view2:View) extends View {

def attachToModel (m:Model):Unit = {
view1.attachToModel(m)
view2.attachToModel(m)

}

def update (vis:Visible):Unit = {

321

view1.update(vis)
view2.update(vis)

}

def win ():Unit = {
view1.win()
view2.win()

}
}# $

With this, we can very quickly implement a version of the Maze game that both displays a
GUI window, and that gives a textual output of the player status, as follows:! "
object MainDual {

def main (argv:Array[String]):Unit = {

val v1 = new GUIView
val v2 = new TextView
val v = new DualView(v1,v2)
val c = new TextController
val m = new BasicModel(v,c)

c.run()
}

}# $
It is also possible to change the view (and the controller for that matter) to play the game
across a network, although that requires a bit more infrastructure, and a client on another
machine.

The MVC design pattern is quite flexible, and you’ll find different variations on it out there
in the wild. For instance, our views, even though they are attached to a particular model, do
not actually call into the model. That’s because we managed to capture all the information
required for a view to update itself in the Visible argument. For more complex updates,
summarizing the information in such a way is not easily done. In that case, it is possible to
simply have the model define a set of query methods that the view can call to ask the model
about information it can use to update its display. The update() method then need not
take any argument, since the view will query the model directly.

322

