
Object-Oriented Design Lecture 21
CS 3500 Spring 2011 (Pucella) Friday, Apr 1, 2011

21 Subtyping and Parameterized Types

Given a parameterized type Foo[T], suppose we know that A ≤ B (A is a subtype of B), then
what is the relationship between Foo[A] and Foo[B]? There are three possibilities:

(1) Foo[A] and Foo[B] are unrelated;

(2) Foo[A] ≤ Foo[B]; or

(3) Foo[A] ≥ Foo[B].

If (1) holds, we say that Foo is invariant in T; if (2) holds, we say that Foo is covariant
in T; and if (3) holds, we say that Foo is contravariant in T.20 By “holds” here, I mean
the following: which property can we assume and that does not lead to the type system
accepting unsafe programs? (Remember, the whole goal of the type system is to rule out
unsafe programs; subtyping is a way to allow more programs to type check, while still ruling
out unsafe programs.)

Now, when you query people, and you ask, for instance, whether a List[A] should be a
subtype of List[B] when A is a subtype of B, they think about it, and generally say yes,
that should be the case: if you have a function that expects, say, a list of points, then it
should work fine if you give it a list of color points. In other words, most people implicitly
think of lists as being covariant.

So what happens in Scala? Consider our by now well-understood implementation of lists:! "
object List {

def empty[A] ():List[A] = new ListEmpty[A]()

def singleton[B] (i:B):List[B] = new ListSingleton[B](i)

def merge[C] (L:List[C], M:List[C]):List[C] = new ListMerge[C](L,M)

private class ListEmpty[T] () extends List[T] {

20if Foo has only one parameter, we usually simply say that Foo is invariant, covariant, or contravariant.

268

def isEmpty ():Boolean = true
def first ():T = throw new RuntimeException("empty().first()")
def rest ():List[T] = throw new RuntimeException("empty().rest()")

def length ():Int = 0

override def hashCode ():Int = 41

override def toString ():String = ""
}

private class ListSingleton[U] (i:U) extends List[U] {

def isEmpty ():Boolean = false
def first ():U = i
def rest ():List[U] = List.empty()

def length ():Int = 1

override def hashCode ():Int = 41 + i.hashCode()

override def toString ():String = " " + i.toString()
}

private class ListMerge[V] (L:List[V], M:List[V]) extends List[V] {

def isEmpty ():Boolean =
(L.isEmpty() && M.isEmpty())

def first ():V =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List[V] =
if (L.isEmpty())
M.rest()

else
List.merge(L.rest(),M)

269

def length ():Int = L.length() + M.length()

override def hashCode ():Int =
41 * (
41 + L.hashCode()

) + M.hashCode()

override def toString ():String = L.toString() + M.toString()
}

}

abstract class List[T] {

def isEmpty ():Boolean
def first ():T
def rest ():List[T]
def length ():Int

}# $
Let’s write some code to see what happens if we try to subtype lists. Here are two functions
that work on lists of points and color points:

def xCoords (l:List[Point]):List[Int] = {
if (l.isEmpty())
List.empty[Int]()

else
List.merge(List.singleton(l.first().xCoord()),xCoords(l.rest()))

}

def colors (l:List[CPoint]):List[String] = {
if (l.isEmpty())
List.empty[String]()

else
List.merge(List.singleton(l.first().color()),colors(l.rest()))

}

Function xCoords() takes a list of Points and returns the list of all the x-coordinates of those
points. Function colors() does something similar, taking a list of CPoints and returning
the list of all the colors of those points.

For all of the examples below, we shall use the following definitions:

270

val p:Point = Point.cartesian(40,50)
val q:Point = Point.cartesian(400,500)
val l:List[Point] = List.merge(List.singleton(p),

List.merge(List.singleton(q),List.empty()))

val cp:CPoint = CPoint.cartesian(10,20,Color.red())
val cq:CPoint = CPoint.cartesian(100,200,Color.blue())
val cl:List[CPoint] = List.merge(List.singleton(cp),

List.merge(List.singleton(cq),List.empty()))

Now, we can try:

scala> xCoords(l)
res0: List[Int] = 40 400

scala> xCoords(cl)
<console>:13: error: type mismatch;
found : List[CPoint]
required: List[Point]

xCoords(cl)
^

So we see that we cannot call xCoords() with a list of CPoints. In other words, by default,
Scala considers parameterized types to be invariant. (So does Java, by the way.)

21.1 Covariance

Our intuition is that List should be covariant. It should be possible to call xCoords()
passing in the list cp of CPoints.

You can tell Scala that you want List to be covariant by annotating the definition of List:! "
abstract class List[+T] {

def isEmpty ():Boolean
def first ():T
def rest ():List[T]
def length ():Int

}# $
Note that + before the type parameter — it says that List is now covariant in that parameter.
Compiling the code does not cause a problem; Scala seems happy to consider List covariant.
Let’s try it out:

271

scala> xCoords(cl)
res0: List[Int] = 10 100

And everything works as expected.

So why the big deal? Why not make every parameterized type covariant by default. Because
covariance is not always safe. In particular, mutation lets us write unsafe programs if we
assume covariance.

Let me illustrate this. Suppose that we make List mutable by adding a method update()
that lets us change the first element of a list. Here is the resulting code:! "
object List {

def empty[A] ():List[A] = new ListEmpty[A]()

def singleton[B] (i:B):List[B] = new ListSingleton[B](i)

def merge[C] (L:List[C], M:List[C]):List[C] = new ListMerge[C](L,M)

private class ListEmpty[T] () extends List[T] {

def isEmpty ():Boolean = true
def first ():T = throw new RuntimeException("empty().first()")
def rest ():List[T] = throw new RuntimeException("empty().rest()")

def length ():Int = 0

def update (v:T):Unit =
throw new RuntimeException("empty().update()")

override def hashCode ():Int = 41

override def toString ():String = ""
}

private class ListSingleton[U] (i:U) extends List[U] {

private var value:U = i

def isEmpty ():Boolean = false
def first ():U = value

272

def rest ():List[U] = List.empty()

def length ():Int = 1

def update (v:U):Unit = { value = v }

override def hashCode ():Int = 41 + i.hashCode()

override def toString ():String = " " + value.toString()
}

private class ListMerge[V] (L:List[V], M:List[V]) extends List[V] {

def isEmpty ():Boolean =
(L.isEmpty() && M.isEmpty())

def first ():V =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List[V] =
if (L.isEmpty())
M.rest()

else
List.merge(L.rest(),M)

def length ():Int = L.length() + M.length()

def update (v:V):Unit =
if (L.isEmpty())

M.update(v)
else

L.update(v)

override def hashCode ():Int =
41 * (
41 + L.hashCode()

) + M.hashCode()

273

override def toString ():String = L.toString() + M.toString()
}

}

abstract class List[T] {

def isEmpty ():Boolean
def first ():T
def rest ():List[T]
def length ():Int

def update (v:T):Unit // mutates the first element of a list
}# $

This compiles, and works fine, but we had to make List invariant. If we add a + before the
type parameter T to indicate that we want List to be covariant, then the compiler complains
during type checking:

List.scala:73: error: covariant type T occurs in contravariant
position in type T of value v
def update (v:T):Unit

So the type checker is unhappy if we try to make List covariant. Why is that? Assuming
that the type checker is not unnecessarily conservative, then there must be a way to write
an unsafe program if we assume covariance here.

Let’s do that. Suppose that the type checker allowed us to say that List was covariant. Then
we could write the following sequence (again, assuming the definitions for p,q,l,cp,cq,cl
above), and it would type check:

val cl2:List[Point] = cl
cl2.update(Point.cartesian(99,99))
colors(cl)

But it is easy to see that if we could execute the above sequence, then we would get a method
color() not found error during execution of colors(): the first line makes cl2 an alias for
cl, which is a list of CPoints (that is, if you recall the sharing diagrams from last time, both
cl and cl2 are references to the same instance). But cl2 has static type List[Point], so
we can call its update() method that expects a Point, and we can update cl2 so that the
first element is a Point. But because cl2 and cl are aliases for the same underlying list,
we’ve made the first element of cl a Point, so that cl is not a list of color points anymore,
but actually has a Point in it. And when calling colors(cl), the system would try to call
color() on the first element of cl, which is a Point.

274

Looking at the sequence above, the second and third lines are pretty uncontroversial — we’re
calling methods on cl2 and cl with an argument of the exact type each method expects. So
the problem must come from the first line, where we have to use an upcast provided us by
our assumption that List is covariant. The solution is to forbid this upcast, that is, forbid
List from being covariant.

One might think that the problem has to do with the update, but it turns out to be more
subtle than that. The problem is that List[T] has a method that expects an argument of
type T. That’s sufficient to cause problems, it turns out. Of course, an update is exactly
a method of that sort, so that explains why updates are problematic. To show that this
problem is indeed due to method of that sort, consider a different variant of List: instead
of adding an update() method, we add a find() method that returns a Boolean indicating
whether a particular element appears in the list.! "
object List {

def empty[A] ():List[A] = new ListEmpty[A]()

def singleton[B] (i:B):List[B] = new ListSingleton[B](i)

def merge[C] (L:List[C], M:List[C]):List[C] = new ListMerge[C](L,M)

private class ListEmpty[T] () extends List[T] {

def isEmpty ():Boolean = true
def first ():T = throw new RuntimeException("empty().first()")
def rest ():List[T] = throw new RuntimeException("empty().rest()")

def length ():Int = 0

def find (v:T):Boolean =
false

override def hashCode ():Int = 41

override def toString ():String = ""
}

private class ListSingleton[U] (i:U) extends List[U] {

def isEmpty ():Boolean = false

275

def first ():U = i
def rest ():List[U] = List.empty()

def length ():Int = 1

def find (v:U):Boolean =
(v == value)

override def hashCode ():Int = 41 + i.hashCode()

override def toString ():String = " " + value.toString()
}

private class ListMerge[V] (L:List[V], M:List[V]) extends List[V] {

def isEmpty ():Boolean =
(L.isEmpty() && M.isEmpty())

def first ():V =
if (L.isEmpty())
M.first()

else
L.first()

def rest ():List[V] =
if (L.isEmpty())
M.rest()

else
List.merge(L.rest(),M)

def length ():Int = L.length() + M.length()

def find (v:V):Boolean =
(L.find(v) || M.find(v))

override def hashCode ():Int =
41 * (
41 + L.hashCode()

) + M.hashCode()

override def toString ():String = L.toString() + M.toString()

276

}
}

abstract class List[T] {

def isEmpty ():Boolean
def first ():T
def rest ():List[T]
def length ():Int

def find (v:T):Boolean
}# $

Again, if we try to make List covariant, we get a complaint from the Scala compiler during
type checking. Let me show you code that is indeed unsafe if we allowed List to be covariant.

The example is not as direct as with mutation above. We first need to consider the following
class, which defines a subtype of List[CPoint]:! "
object BadListCP {

def empty ():BadListCP = new ListEmpty()

def cons (n:CPoint, L:BadListCP):BadListCP = new ListCons(n,L)

private class ListEmpty () extends BadListCP {
def isEmpty ():Boolean = true
def first ():CPoint =
throw new RuntimeException("empty().first()")

def rest ():BadListCP =
throw new RuntimeException("empty().rest()")

def length ():Int = 0

def find (f:CPoint):Boolean = false

override def toString ():String = ""
}

private class ListCons (n:CPoint, L:BadListCP) extends BadListCP {
def isEmpty ():Boolean = false
def first ():CPoint = n
def rest ():BadListCP = L

277

def length ():Int = 1 + L.length()

def find (f:CPoint):Boolean = {
println("Trying to find value " + f + " with color " + f.color())
(f == n) || L.find(f)

}

override def toString ():String = " " + n + L.toString()
}

}

abstract class BadListCP extends List[CPoint] {

def isEmpty ():Boolean
def first ():CPoint
def rest (): BadListCP
def length ():Int
def find (f:CPoint):Boolean

}# $
I’m using two different creators here, empty() and cons(), for simplicity, and to show
that subtypes can have different creators. This is completely orthogonal to my point here
about coming up with an unsafe program. The important thing is the definition of find in
BadListCP.ListCons: it calls the color() method of the value find() is looking for. This
is perfectly fine, because we know here that find() expects a CPoint. So what could go
wrong?

Well, just like before, suppose that the type checker allowed us to say that List was covariant.
This would mean, in particular, that BadListCP ≤ List[CPoint] ≤ List[Point]. We could
then write the following sequence, and it would type check:

val blc:BadListCP = BadListCP.cons(cp,BadListCP.cons(cq,BadListCP.empty()))
val cl2:List[Point] = blc
cl2.find(Point.cartesian(10,20))

Let’s see what would happen if we were to run this: we create a BadListCP blc, define an alias
cl2 for it (with static type List[Point]) via an upcast because BadListCP ≤ List[Point]
by assumption, and then call cl2.find() passing in a Point. Because of dynamic dispatch,
the find() method that gets called is the find() method in the dynamic type of cl2, which
is BadListCP, so that the find() method that gets called is the one that tries to access
the color() method of its argument, and this would cause a method color() not found
error because Point.cartesian(10,20) does not produce an instance that has a color()
method in it.

278

So to a first approximation, the problem is methods expecting an argument of the same type
as the parameter of the type we are defining, and those methods prevent us from making
the type covariant.

It turns out that there is a way to make a parameterized type covariant even though it has
methods that expect a value of the type of the parameter. But we have to work a bit harder
at it. The idea is to give a method like find() a type that prevents us from writing the kind
of code in BadListCP. Here is the solution. Give find() the type:

def find[U >: T] (f:U):Boolean

Intuitively, find() now can take as argument a value of any type that is a supertype of T, the
parameter type. In particular, this means that the body of find() cannot take advantage
of any method that T may have, since we are not guaranteed to give it a value of type T.
Thus, in BadListCP, the method definition:

def find[U >: CPoint] (f:U):Boolean = {
println("Trying to find value " + f + " with color " + f.color())
(f == n) || L.find(f)

}

would fail type check, since f has some type that is a supertype of CPoint, so that the type
checker cannot guarantee that f has a method named color().

If we give find() the above type, we find that we can make List covariant — the code
compiles, and executing it yields:

scala> xCoords(cl)
res0: List[Int] = 10 100

scala> cl.find(cp)
res1: Boolean = true

scala> cl.find(CPoint.cartesian(5,6,"red"))
res3: Boolean = false

Exercise: correct update() in the same way.

21.2 Contravariance

What about contravariance? Is there any time when contravariance holds? The answer is
yes. You tell Scala to make a parameterized type contravariant by using a - annotation
instead of a + annotation. Contravariance is rare, but it does occur. Here is an example:

279

! "
class Writer[-T] {

def write (v:T):Unit =
println("Value = " + v.toString())

}# $
If we have a function that expects such a writer, and a value to write to the writer:

def sendToWriter (w:Writer[CPoint],v:CPoint) =
w.write(v)

We can see how contravariance is useful. Because CPoint ≤ Point, by contravariance,
Writer[Point] ≤ Writer[CPoint]. So we can call:

scala> sendToWriter(new Writer[CPoint], cp)
Value = (10,20)@red

scala> sendToWriter(new Writer[Point], cp)
Value = (10,20)@red

And in fact we can also write another subtype of Writer[Point]:! "
class FunkyPointWriter extends Writer[Point] {

override def write (v:Point):Unit = {
println("Writing point with x-coordinate " + v.xCoord())
super.write(v)

}
}# $

and using it:

scala> sendToWriter(new FunkyPointWriter, cp)
Writing point with x-coordinate 10
Value = (10,20)@red

21.3 Arrays in Java

Let’s jump down to Java for this section. As I mentioned above, parameterized types in Java
are invariant, and there is no way to make them either covariant or contravariant.

280

What about arrays, though? Arrays are clearly mutable in Java, and a few experiments
indicate that arrays are covariant: we can pass an Array[CPoint] to a function expecting
an Array[Point], and the Java type checker will not complain. To illustrate, assume that
we have Java implementations of Point and CPoint, and consider the following code:! "
public class Test1 {

public static void showCollection (Point[] coll) {
System.out.println("In showCollection()");
for (Point p : coll)
System.out.println(" element = " + p.xCoord() + " " + p.yCoord());

}

public static void main (String[] argv) {

CPoint[] coll = new CPoint[2];

coll[0] = new CPoint(10,10,"red");
coll[1] = new CPoint(20,20,"blue");

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

showCollection(coll);

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

}
}# $

This code type checks and executes without problems: it is okay to pass the array of CPoints
to showCollection(), because each CPoint has both a xCoord() and yCoord() method,
and execution proceeds without encountering an undefined method:

In main()
element color = red
element color = blue
In showCollection()
element = 10 10
element = 20 20
In main()

281

element color = red
element color = blue

Now, we saw above that when we make Lists mutable and covariant, we introduce the
possibility of letting the type checker accept unsafe programs. And I just said that in Java,
arrays are both mutable and covariant. So what gives? If mutable lists cause a problem
when they’re covariant, then arrays should cause a problem too. And indeed, a variant of
the example that I used for lists showcases this:! "
public class Test2 {

public static void showCollection (Point[] coll) {
System.out.println("In showCollection()");
for (Point p : coll)
System.out.println(" element = " + p.xCoord() + " " + p.yCoord());

coll[0] = new Point(0,0);
}

public static void main (String[] argv) {

CPoint[] coll = new CPoint[2];

coll[0] = new CPoint(10,10,"red");
coll[1] = new CPoint(20,20,"blue");

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

showCollection(coll);

System.out.println("In main()");
for (CPoint cp : coll)
System.out.println(" element color = " + cp.color());

}
}# $

Test2 is very similar to Test1, except that function showCollection() now modifies the first
element of the array, making it hold a new Point. The code type checks: By contravariance
of arrays, because CPoint ≤ Point, the type system lets you pass a CPoint[] to a method
expecting a Point[]. And because the array coll in showCollection() is declared to be
an array of Points (its static type), the type system is quite happy to let you update the

282

first element in the array into a different Point.

The problem is that passing an object (including an array) to a method in Java only passes
a reference to that object. The object is not actually copied, as we saw when we saw
the mutation model. So when function showCollection() updates the array through its
argument coll, it ends up modifying the underlying array coll in function main(). But
that means that when we come back from the showCollection() function, array coll is
an array of CPoints where the first element of the array is not a CPoint any longer, but
rather a Point. And when we attempt to invoke method color() on that first element, Java
would choke because that first element, being a plain Point, does not in fact implement the
color() method. The program is unsafe, but the type system accepted it.

Java trades off this inadequacy of the type system by doing a runtime check at the statement
that causes the problem: the update coll[0] = new Point(0,0). Java catches the fact that
you are attempting to modify an array by putting in an object that is not a subclass of the
dynamic type of the data in the array, and throws an ArrayStoreException. Here, that’s
because we are trying to put a Point into an array with dynamic type CPoint[]:

In main()
element color = red
element color = blue
In showCollection()
element = 10 10
element = 20 20
Exception in thread "main" java.lang.ArrayStoreException: Point

at Test2.showCollection(Test2.java:9)
at Test2.main(Test2.java:23)

The point remains: the type system does not fully do its job, and has to deleguate to the
runtime system the responsability of ensuring that the problem above does not occur. And
that’s a problem — recall that lecture we had about why it was a good idea to report errors
early, such as when the program is being compiled as opposed to when it executes?

283

