
Object-Oriented Design Lecture 19
CS 3500 Spring 2011 (Pucella) Friday, Mar 25, 2011

19 Mutation

We have not talked about mutation until now. But mutation exists in most languages,
including Java and Scala. Many libraries rely on it. So we need to know how to deal with it.

Recall that a class is immutable if an instance of the class never changes after it has been
created (that is, observations made on the class, such as results of operations, are always the
same). In contrast, a class is mutable if its instances may change during their lifetime.

So let’s try to get an understanding of mutation. Mutation can be problematic because an
instance can change under you without you noticing, leading to hard to find bugs. This is
the root of my advocacy for immutability — it is just plain easier to reason about immutable
classes. Immutable classes are also easier to parallelize, as well as easier to debug. The flip
side is that there are some algorithms that are much easier to implement using mutation
than without.

Consider a scenario that is common in diagram-drawing programs. You can create a drawing
with lines, where each line as a starting point and an end point, and some of those starting
points may be shared. Often you are also able to click on those so-called anchor points and
drag them, and all the lines connected to that anchor point move with them.

Now, doing this with our immutable implementation of points, where a line has a starting
point and an end point, is difficult. Not impossible, but difficult. The problem is that
because points are immutable, when you move a point, you actually create a new instance of
a point at the new (moved) location. But the lines are still connected to the original point,
which hasn’t moved (it is immutable!) So there needs to be a way for that newly created
point to somehow tell all the lines that are connected to the original point to now instead
connect to it. And because lines are immutable, this requires creating a new set of lines that
are now connected to the new point. It is possible to set up something like this (and in fact,
it’s a good exercise to do so...) but an easier way is simply to avoid creating a new point
when we move the point, and instead just mutate it. Then every line connected to the point
is automatically aware of the change, and there is no need to reconstruct new lines.

Rather than making points mutable, I will instead define a new ADT for anchor points,
Anchor, with the following interface:

CREATORS create : Point -> Anchor

OPERATIONS position : () -> Point
move : (Double,Double) -> Unit

244

Note that move() returns Unit, which is an indication that it actually returns no useful
value. The only reason why we call move() is for its side-effect, that is, changing the current
instance. I will skip the specification, because it turns out that giving algebraic specifications
for mutable ADTs is nearly impossible. Try it, and you’ll see where things break down.

Here is an implementation:! "
object Anchor {

def create (p:Point):Anchor = new AnchorRepr(p)

private class AnchorRepr (p:Point) extends Anchor {

// var indicates that the field can be reassigned a new value
var pos = p

def position ():Point = pos

def move (dx:Double, dy:Double):Unit =
pos = pos.move(dx,dy) // move point and reassign

// pos to be that point

override def toString ():String = "anchor(" + pos + ")"
}

}

abstract class Anchor {

def position ():Point
def move (dx:Double, dy:Double):Unit

}# $
A class can be made mutable (to a first approximation) by first making some of its fields
mutable – defining them with var instead of val. (In Java, all fields are always mutable) and
then making sure that those fields can be updated. This can be achieved in two ways: either
by making those fields public (so that instances of the class can be modified by clients), or
by having methods change the value of fields.

Having the ability to mutate fields means that an instance may yield different observations
at different point in times. For instance:

scala> val a = Anchor.create(Point.cartesian(1,2))
a: Anchor = anchor(cartesian(1.0,2.0))

245

scala> a.position().xCoord()
res0: Double = 1.0

scala> a.move(50,50)

scala> a
res3: Anchor = anchor(cartesian(51.0,52.0))

scala> a.position().xCoord()
res2: Double = 51.0

Here, the call to toString() returns different results, even though it is invoked on the same
value p. One difficulty with mutation is that an update may be hidden away in some random
method that provides no clue that it is mutating something.

scala> a
res4: Anchor = anchor(cartesian(51.0,52.0))

scala> def someFunction (anchor:Anchor):Unit = { anchor.move(100,100); }
someFunction: (anchor: Anchor)Unit

scala> someFunction(a)

scala> someFunction(a)

scala> a
res7: Anchor = anchor(cartesian(251.0,252.0))

Again, this mutates anchor a, but there is no indication that the call to someFunction()
does a mutation. If this mutation is unintended, that can lead to bugs that are difficult to
track down.

Let’s consider the Line ADT where the end points of the line are anchors:

CREATORS create : (Anchor, Anchor) -> Line

OPERATIONS start : () -> Anchor
end : () -> Anchor

with specification:

create(a1,a2).start() = a1

246

create(a1,a2).end() = a2

and implementation:! "
object Line {

def create (s:Anchor, e:Anchor):Line = new LineRepr(s,e)

private class LineRepr (s:Anchor, e:Anchor) extends Line {

def start ():Anchor = s
def end ():Anchor = e

override def toString ():String = s + " <-> " + e
}

}

abstract class Line {

def start ():Anchor
def end ():Anchor

}# $
This implementation of the Line ADT suggests another difficulty with mutability. Mutabil-
ity is a contagious property : a class that looks immutable may in fact be mutable if it relies
on classes that are themselves mutable. Line looks like it is an immutable implementation
of the Line ADT: it has no variable fields (aside from the implicit fields holding the values
passed as parameters) and it cannot change the value of those fields. Unfortunately, the
following snippet of code shows that an instance of Line can indeed change:

scala> val a1 = Anchor.create(Point.cartesian(0,0))
a1: Anchor = anchor(cartesian(0.0,0.0))

scala> val a2 = Anchor.create(Point.cartesian(50,50))
a2: Anchor = anchor(cartesian(50.0,50.0))

scala> val l = Line.create(a1,a2)
l: Line = anchor(cartesian(0.0,0.0)) <-> anchor(cartesian(50.0,50.0))

scala> l.start().position().xCoord()
res8: Double = 0.0

247

scala> a1.move(100,100)

scala> l
res10: Line = anchor(cartesian(100.0,100.0)) <-> anchor(cartesian(50.0,50.0))

scala> l.start().position().xCoord()
res11: Double = 100.0

So l was originally a line between an anchor at (0, 0) and an anchor at (50, 50), but after
mutating a, l is now a line between an anchor at (100, 100) and an anchor at (50, 50). So
l has changed. That’s something to keep in mind: a class may be mutable even though it
looks like it is not. As soon as part of your program is mutable, it will have a tendency to
make the rest of your program mutable as well.

Part of the point of this lecture is to provide a model of mutation so that you can understand
exactly what is happening in the examples above.

To work with mutation correctly, and help you track down bugs, you need to have a good
understanding of what actually gets update when you make an update! You update some
field in some instance of a class, what actually gets updated, and who else can see it? The
problem is that when the state of an instance can change, it becomes very important to
understand when instances are shared between different instances, so that we can track
when a change can be seen from another instance.

To pick a silly example, if we write:

scala> val a1 = Anchor.create(Point.cartesian(0,0))
a1: Anchor = anchor(cartesian(0.0,0.0))

scala> val a2 = Anchor.create(Point.cartesian(0,0))
a2: Anchor = anchor(cartesian(0.0,0.0))

Then computing with a1 and a2 both give the same result, and if we mutate a1 by calling
move(), a2 is unaffected:

scala> a1.move(20,20)

scala> a1
res13: Anchor = anchor(cartesian(20.0,20.0))

scala> a2
res14: Anchor = anchor(cartesian(0.0,0.0))

Contrast that to:

248

scala> val a3 = Anchor.create(Point.cartesian(0,0))
a3: Anchor = anchor(cartesian(0.0,0.0))

scala> val a4 = a3
a4: Anchor = anchor(cartesian(0.0,0.0))

where again computing with a3 and a4 both give the same result, but if we mutate a3
anywhere, then a4 is changed as well:

scala> a3.move(20,20)

scala> a3
res16: Anchor = anchor(cartesian(20.0,20.0))

scala> a4
res17: Anchor = anchor(cartesian(20.0,20.0))

That’s because a3 and a4 hold the same instance — they share that instance. In contrast, a1
and a2 both hold different instances (even though those instances look the same). Tracking
this kind of sharing is what makes working with mutation error prone.

My claim is that to understand mutation, you need to have a working model of how a
language represents instances internally. It does not need to be an accurate model; it just
needs to have good predictive power. Let me describe a basic model that answers the
question: where do variables and fields live? (The question ‘where do methods live?’ is less
interesting because methods are not mutable.)

Recall that when you create an instance with a new statement, a block of memory is allocated
in memory (in the heap) representing the new instance. Here is how we represent an instance
in the heap:

+------------+
class name
fields
+------------+

This representation does not have include the methods, because that’s not what I want to
focus on right now. You can think of the value returned by a new as the address in memory
where the instance lives. (This is sometimes called an instance reference, or a pointer.) Thus,
for instance, when you write

249

val a = Anchor.create(Point.cartesian(0,10))

a new instance of Point19 is created in memory, and its instance reference is passed to
the creator Anchor.create(), which creates an instance of Anchor and stores the passed
argument (the instance reference to the Point instance) in the pos field of the Anchor
instance. What is returned (and stored in a) is the instance reference for the Anchor instance.
We can represent this as follows:

+-------------+ +------------+
a1 *----------> | Anchor | +---> | Point |

|-------------| | |------------|
| pos = *-----------+ | xpos = 0 |
+-------------+ | ypos = 10 |

+------------+

When you pass an instance as an argument to a method, what you end up passing is the
instance reference of that instance (that is, the value returned by the new that create the
instance in the first place). That is how instances get manipulated.

Consider lines. When you create a Line instance, passing in two anchors (that is, two
instance references to anchors), you store those instance reference in the fields s and e in
the created line. Thus:

val a1 = Anchor.create(Point.cartesian(0,10))
val a2 = Anchor.create(Point.cartesian(0,20))
val l1 = Line.create(a2,a1)

19Well, in reality, if you look at the code for Point.cartesian(), you see that a new instance of
Point.PointCartesian is in fact created, but for the sake of discussion here we can just simply things and
say that an instance of Point is created. We’ll do something similar for Anchor, where Anchor.create()
actually creates an instance of Anchor.AnchorRepr, but we will just call it an instance of Anchor.

250

+-------------+
a1 *----------> | Anchor | <-----+

|-------------| | +------------+
| pos = *---------------> | Point |
+-------------+ | |------------|

| | xpos = 0 |
| | ypos = 10 |
| +------------+

+-------------+ |
a2 *----------> | Anchor | <--+ |

|-------------| | | +------------+
| pos = *---------------> | Point |
+-------------+ | | |------------|

| | | xpos = 0 |
| | | ypos = 20 |
| | +------------+
| |

+-------------+ | |
l1 *----------> | Line | | |

|-------------| | |
| s = *------------+ |
| e = *---------------+
+-------------+

To find the value of a field, you follow the arrows to the instance that holds the field you
are trying to access. Thus, a1.position().xCoord() looks up the pos field in the instance
pointed to by a1, and then the xpos field in the instance pointed to by that pos field.
Similarly, l1.end().position().yCoord() accesses the ypos field of the instance pointed
to by l1.end().position(), which is the content of the pos field in the instance pointed
to by l1.end(), which is the instance pointed to by the content of the e field of l1.

In particular, you see why if after creating the above we write

scala> a1.move(0,5)

scala> l1
res19: Line = anchor(cartesian(0.0,20.0)) <-> anchor(cartesian(0.0,15.0))

we get that l1 is now a line between an anchor at (0, 20) and an anchor at (0, 15); intuitively,
that’s because a1 is the same instance as the anchor stored as the end point in l1. Here is
the diagram of the result of the call to a1.move(0,5). Note that move() in Anchor replaces
the content of the pos field with a new point.

251

+------------+
+----> | Point |

	xpos = 0
	ypos = 15

+-------------+ | +------------+
a1 *----------> | Anchor | <--|--+

|-------------| | | +------------+
| pos = *----------+ | | Point |
+-------------+ | |------------|

| | xpos = 0 |
| | ypos = 10 |
| +------------+

+-------------+ |
a2 *----------> | Anchor | <--+ |

|-------------| | | +------------+
| pos = *---------------> | Point |
+-------------+ | | |------------|

| | | xpos = 0 |
| | | ypos = 20 |
| | +------------+
| |

+-------------+ | |
l1 *----------> | Line | | |

|-------------| | |
| s = *------------+ |
| e = *---------------+
+-------------+

We call this phenomenon sharing. It is reflected by the fact that there are two arrows
pointing to the same instance in the above diagram.

Compare the above by what gets constructed if we write:

val a3 = Point.create(Point.cartesian(0,10))
val l2 = Line.create(a3,a3)

252

+-------------+ <-----+
a3 *----------> | Anchor | <--+ |

|-------------| | | +------------+
| pos = *---------------> | Point |
+-------------+ | | |------------|

| | | xpos = 0 |
| | | ypos = 10 |

+-------------+ | | +------------+
l2 *----------> | Line | | |

|-------------| | |
| s = *------------+ |
| e = *---------------+
+-------------+

Here, the same anchor is used as start and end points of l2. Meaning, in particular, that if
we update field pos of a3, both the start and end points of l2 change.

253

