Object-Oriented Design Lecture 17
CS 3500 Spring 2011 (Pucella) Friday, Mar 18, 2011

17 From Delegation to Inheritance

Last time, we saw how to reuse code from the implementation of Point in CPoint via del-
egation. Recall the setup: we have an implementation of the POINT ADT using the Inter-
preter Design Pattern, using two representation classes CartesianPoint and PolarPoint,
and an implementation of the CPOINT ADT using the Interpreter Design Pattern, using
two representation classes CartesianCPoint and PolarCPoint. The idea is that the code
for CartesianCPoint shares a lot of similarity with that of CartesianPoint, and simi-
larly for PolarCPoint and PolarPoint. Delegation gives us a way to reuse the code from
CartesianPoint in CartesianCPoint, and from PolarPoint in PolarCPoint.

17.1 A Simple Example of Inheritance

Let’s start simple. Here is the code from last lecture — or at least, a minor variant of it
— where we delegate the easy methods, and simply recode the ones that we cannot easily
delegate.

object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint
new CartesianCPoint(x,y,c)

def polar(r:Double,theta:Double,c:Color):CPoint
if (r<0)
throw new Error("r negative")
else
new PolarCPoint(r,theta,c)

private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CPoint {

// delegate -- takes care of point-related operations
val del:Point = Point.cartesian(xpos,ypos)

// these methods can all be delegated

208

def xCoord () :Double = del.xCoord()

def yCoord ():Double = del.yCoord()

def distanceFromOrigin ():Double = del.distanceFromOrigin()
def angleWithXAxis () :Double = del.angleWithXAxis()

def isOrigin () :Boolean = del.isOrigin()

def distance (q:Point):Double = del.distance(q)

def add (q:Point):Point = del.add(q)

// special: uses an upcast
def distance (q:CPoint):Double = del.distance(q)

// these method cannot be easily delegated

def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xpos+dx, ypos+dy,c)

def add (q:CPoint):CPoint =
new CartesianCPoint (xpos+q.xCoord(),ypos+q.yCoord(),q.color())

def rotate (t:Double):CPoint =
new CartesianCPoint(xpos*math.cos(t)-ypos*math.sin(t),
xpos*math.sin(t)+ypos*math.cos(t),

c)

def isEqual (q:CPoint):Boolean =
(xpos == q.xCoord()) && (ypos == q.yCoord()) && (c==q.color())

// Specific to color points
def color ():Color = c

def updateColor (nc:Color):CPoint =
new CartesianCPoint (xpos,ypos,nc)

// BRIDGE METHODS
def isEqual (q:Point):Boolean = g match {

case cq:CPoint => isEqual(cq)
case _ => false

209

// CANONICAL METHODS

override def toString ():String =
"Cartesian(" + XpOS + n’n + ypos + ll,ll + c + ||)||

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)

case _ => false

}
override def hashCode ():Int =
41 * (

41 *x (

41 + xpos.hashCode()
) + ypos.hashCode ()
) + c.hashCode()

private class PolarCPoint (r:Double, theta:Double, c:Color)
extends CPoint {

// delegate
val del:Point = Point.polar(r,theta)

def xCoord () :Double = del.xCoord()

def yCoord () :Double = del.yCoord()

def distanceFromOrigin ():Double = del.distanceFromOrigin()
def angleWithXAxis () :Double = del.angleWithXAxis()

def isOrigin () :Boolean = del.isOrigin()

def distance (q:Point):Double = del.distance(q)

def add (q:Point):Point = del.add(q)

// special: uses an upcast
def distance (q:CPoint):Double = del.distance(q)

// these method cannot be easily delegated

def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xCoord()+dx, yCoord()+dy,c)

210

def add (q:CPoint):CPoint =
new CartesianCPoint(xCoord()+q.xCoord(),yCoord()+q.yCoord(),
q.color())

def rotate (angle:Double):CPoint =
new PolarCPoint(r, thetatangle,c)

private def normalize (angle:Double):Double =
if (angle >= 2x*math.Pi)
normalize(angle-2*math.Pi)
else if (angle < 0)
normalize(angle+2*math.Pi)
else
angle

def isEqual (q:CPoint):Boolean = {
r==q.distanceFromOrigin() &&
normalize(theta)==normalize(q.angleWithXAxis()) &&

c==q.color()

}
// Specific to color points
def color ():Color = ¢

def updateColor (nc:Color):CPoint =
new PolarCPoint(r,theta,nc)

// BRIDGE METHODS

def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

// CANONICAL METHODS

override def toString ():String =
"polar(" + T+ "," + theta + "," + c + ")"

override def equals (other : Any):Boolean =
other match {

211

case that : CPoint => this.isEqual(that)

case _ => false

}
override def hashCode ():Int =
41 x (

41 * (

41 + r.hashCode()
) + theta.hashCode()
) + c.hashCode()

abstract class CPoint extends Point {

def xCoord () :Double

def yCoord () :Double

def angleWithXAxis () :Double

def distanceFromOrigin () :Double

def distance (q:CPoint) :Double

def move (dx:Double,dy:Double):CPoint
def add (q:CPoint) :CPoint

def rotate (theta:Double):CPoint

def isEqual (q:CPoint):Boolean

def isOrigin ():Boolean

def color ():Color
def updateColor (nc:Color):CPoint

// bridge methods

def distance (q:Point):Double
def add (q:Point):Point

def isEqual (q:Point):Boolean

An alternative is to directly reuse code from CartesianPoint and PolarPoint in CartesianCPoint
and PolarCPoint, using inheritance. This would be a case of noninnocuous inheritance, since

the methods are developed to work in CartesianPoint and PolarPoint, not CartesianCPoint
and PolarCPoint. So we will have to be careful, and make sure that the methods we inherit

do what we expect them to do.

212

The first problem is that in Scala (like in Java), you can only set up inheritance if you
also have subtyping. So we need to make sure that CartesianCPoint is a subtype of
both CartesianPoint and CPoint, and similarly that PolarCPoint is a subtype of both
PolarPoint and CPoint.

Since we can only subtype one actual class, the other supertype better be a trait. Since we
have no choice in CartesianPoint being a class (since it is concrete), we have to make CPoint
a trait. Not a problem, since traits and abstract classes are pretty much interchangeable.

Here is the resulting code that using inheritance instead of delegation.

object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint
new CartesianCPoint(x,y,c)

def polar(r:Double,theta:Double,c:Color):CPoint
if (r<0)
throw new Error("r negative")
else
new PolarCPoint(r,theta,c)

private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CartesianPoint(xpos,ypos) with CPoint {
def distance (q:CPoint):Double = super[CartesianPoint].distance(q)
// these method cannot be inherited

override def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xpos+dx, ypos+dy,c)

def add (q:CPoint):CPoint =
new CartesianCPoint (xpos+q.xCoord() ,ypos+q.yCoord(),q.color())

override def rotate (t:Double):CPoint =
new CartesianCPoint(xpos*math.cos(t)-ypos*math.sin(t),
xpos*math.sin(t)+ypos*math.cos(t),

c)

def isEqual (q:CPoint):Boolean =
(xpos == q.xCoord()) && (ypos == q.yCoord()) && (c==q.color())

213

// Specific to color points
def color ():Color = ¢

def updateColor (nc:Color):CPoint =
new CartesianCPoint (xpos,ypos,nc)

// BRIDGE METHODS

override def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

// CANONICAL METHODS

override def toString ():String =
"cartesian(" + xpos + "," + ypos + "," + c + ")"

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)

case _ => false

}
override def hashCode ():Int =
41 x (

41 * (

41 + xpos.hashCode()
) + ypos.hashCode()
) + c.hashCode()

private class PolarCPoint (r:Double, theta:Double, c:Color)
extends PolarPoint(r,theta) with CPoint {

def distance (q:CPoint) :Double = super[PolarPoint].distance(q)

// these method cannot be inherited

214

override def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xCoord()+dx, yCoord()+dy,c)

def add (q:CPoint):CPoint =
new CartesianCPoint (xCoord()+q.xCoord(),yCoord()+q.yCoord(),q.color
0)

override def rotate (angle:Double):CPoint =
new PolarCPoint(r, theta+angle,c)

private def normalize (angle:Double):Double =
if (angle >= 2*math.Pi)
normalize(angle-2*math.Pi)
else if (angle < 0)
normalize(angle+2*math.Pi)
else
angle

def isEqual (q:CPoint):Boolean = {
r==q.distanceFromOrigin() &&
normalize(theta)==normalize(q.angleWithXAxis()) &&

c==q.color()

}
// Specific to color points
def color ():Color = ¢

def updateColor (nc:Color):CPoint =
new PolarCPoint(r,theta,nc)

// BRIDGE METHODS

override def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

// CANONICAL METHODS

override def toString ():String =
"polar(" + r + "," + theta + "," + c + ")"

215

override def equals (other : Any):Boolean =

other match {
case that : CPoint => this.isEqual(that)
case _ => false

override def hashCode ():Int =

trait

def
def
def
def
def
def
def
def
def
def

def
def

41 * (
41 * (
41 + r.hashCode()
) + theta.hashCode()
) + c.hashCode()

CPoint extends Point {

xCoord () :Double

yCoord () :Double

angleWithXAxis () :Double
distanceFromOrigin () :Double
distance (q:CPoint) :Double

move (dx:Double,dy:Double):CPoint
add (q:CPoint) :CPoint

rotate (theta:Double):CPoint
isEqual (q:CPoint):Boolean
isOrigin () :Boolean

color ():Color
updateColor (nc:Color):CPoint

// bridge methods

def
def
def

The idea here is that inheritance acts as a form of implicit delegation.

distance (q:Point):Double
add (q:Point) :Point
isEqual (q:Point):Boolean

Rather than us

defining a delegate and having methods in CartesianCPoint call the methods in the del-
egate, inheritance creates a delegate for us and the methods in this implicit delegate are

216

automatically made available to us, unless we override them.

Note the declaration of of CartesianCPoint:

private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CartesianPoint(xpos,ypos) with CPoint {

It declares not only that CartesianCPoint is a subtype of CartesianPoint and of CPoint,
but also that the implicit delegate for CartesianPoint is created with arguments xpos and
ypos — contrast with the explicit definition of the delegate in the original code.

With this definition, the methods that used to be direct delegations are now omitted, since
they are directly inherited from the delegate, and therefore directly available. All that re-
mains to deal with are the ones that were not directly delegated. This includes move (), add ()
(with a CPoint argument), rotate(), isEqual() (both with a CPoint argument and with a
Point argument), color(), updateColor(), toString(), equals(), and hashCode(). For
some of these, we need to indicate that we are overriding (since there is a similarly-defined
method in CartesianPoint that does not do the right thing for us), and for others we do not
need to override because there is no similarly-defined method in CartesianPoint). Note in
particular that one version of isEqual() is overriding the one existing in CartesianPoint,
while the other one does not. Recall that we may have multiply-defined methods in the same
class, which different as far as their arguments, and those are considered distinct methods.

The one method that is problematic is distance() taking a CPoint as an argument. In
the explicit delegation code, this looks like a direct delegation to the distance() method
in CartesianPoint, but in reality there is an upcast that is inserted by the compiler, and
that upcast is a problem here. Roughly, the system does not automatically insert upcasts
to resolve inheritance. In other words, if we omit the definition of distance() taking a
CPoint as an argument, the system complains that we have not defined the method (which
is required in order for CartesianCPoint to be a subtype of CPoint), and so we need to give
it a definition. But really, we want the definition of distance() to simply call the inherited
version of distance(), giving the compiler an opportunity to insert the appropriate upcast
to make the call go through.

The fix is to use the special keyword super, which refers to the implicit delegate. Because
(as we will see), there may be more than one implicit delegate, we also explicitlt state which
implicit delegate we want to invoke, using super[CartesianPoint] to say that it is the
implicit delegate from CartesianPoint that we want to use. Thus, we get the definition:

def distance (q:CPoint):Double = super[CartesianPoint].distance(q)

17.2 A More Complex Example of Inheritance

Once we see the “trick” of being able to refer explicitly to an inherited method, as in
distance() above, then we explore how to get even more reuse out of our methods.

217

To see how we can do that, let’s go back to our explicit delegation code. The methods that
we could not easily delegate all essentially had the property that they needed to reconstruct
a new CPoint, something that the delegate could not do (since a delegate could only re-
construct a Point). But if we took the result of the delegate, and converted that Point
into a CPoint, then we’d be in business. What we need are two helper functions to do the
conversion for us:

def reconstructCart (p:Point,c:Color):CPoint =
new CartesianCPoint (p.xCoord(), p.yCoord(), c)

def reconstructPolar (p:Point,c:Color):CPoint =
new PolarCPoint(p.distanceFromOrigin(), p.angleWithXAxis(), c)

Once we have such helper functions, we can reuse more code by delegating the core func-
tionality of some of those methods we could not delegate easily. Here is the resulting code:

object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint
new CartesianCPoint(x,y,c)

def polar(r:Double,theta:Double,c:Color):CPoint
if (r<0)
throw new Error("r negative")
else
new PolarCPoint(r,theta,c)

private def reconstructCart (p:Point,c:Color):CPoint =
new CartesianCPoint (p.xCoord(),p.yCoord(),c)

private def reconstructPolar (p:Point,c:Color):CPoint =

new PolarCPoint(p.distanceFromOrigin(),
p.angleWithXAxis(),c)

private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CPoint {

// delegate -- takes care of point-related operations
val del:Point = Point.cartesian(xpos,ypos)

// these methods can all be delegated

218

def xCoord () :Double = del.xCoord()

def yCoord () :Double = del.yCoord()

def distanceFromOrigin ():Double = del.distanceFromOrigin()
def angleWithXAxis () :Double = del.angleWithXAxis()

def distance (q:CPoint):Double = del.distance(q)

def isOrigin () :Boolean = del.isOrigin()

def distance (q:Point):Double = del.distance(q)
def add (q:Point):Point = del.add(q)

// these method cannot be easily delegated
// (they create new CPoints, or they rely on colors)

def move (dx:Double,dy:Double):CPoint =
reconstructCart(del.move(dx,dy),c)

def add (q:CPoint):CPoint =
reconstructCart(del.add(q),q.color())

def rotate (t:Double):CPoint =
reconstructCart(del.rotate(t),c)

def isEqual (q:CPoint):Boolean =
del.isEqual(q) && (c==q.color())

def color ():Color = c

def updateColor (nc:Color):CPoint =
new CartesianCPoint(xpos,ypos,nc)

// BRIDGE METHODS

def isEqual (q:Point):Boolean = g match {
case cq:CPoint => isEqual(cq)
case _ => false

// CANONICAL METHODS

override def toString ():String =

219

"cartesian(" + XpOS + n’u + YPOS + u’u + c + II)H

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)

case _ => false

}
override def hashCode ():Int =
41 x (

41 * (

41 + xpos.hashCode()
) + ypos.hashCode ()
) + c.hashCode()

private class PolarCPoint (r:Double, theta:Double, c:Color)

extends CPoint {

// delegate
val del:Point = Point.polar(r,theta)

def xCoord () :Double
def yCoord () :Double

del.xCoord()
del.yCoord()

def distanceFromOrigin () :Double = del.distanceFromOrigin()
def angleWithXAxis () :Double = del.angleWithXAxis()
def distance (q:CPoint) :Double = del.distance(q)

def isOrigin ():Boolean = del.isOrigin()

def distance (q:Point):Double = del.distance(q)

def add (q:Point):Point = del.add(q)

def move (dx:Double,dy:Double):CPoint =
reconstructCart (del.move(dx,dy),c)

def add (q:CPoint):CPoint =
reconstructCart(del.add(q),q.color())

def rotate (angle:Double):CPoint =
reconstructPolar(del.rotate(angle),c)

220

def isEqual (q:CPoint):Boolean = {
del.isEqual(q) && c==q.color()
}

def color ():Color = c

def updateColor (nc:Color):CPoint =
new PolarCPoint(r,theta,nc)

// BRIDGE METHODS

def isEqual (q:Point):Boolean = gq match {
case cq:CPoint => isEqual(cq)
case _ => false

// CANONICAL METHODS

override def toString ():String =
"polar(" + r + "," + theta + "," + ¢ + ")"

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)

case _ => false

}
override def hashCode ():Int =
41 * (

41 *x (

41 + r.hashCode()
) + theta.hashCode()
) + c.hashCode()

abstract class CPoint extends Point {
def xCoord () :Double

def yCoord () :Double
def angleWithXAxis () :Double

221

def distanceFromOrigin () :Double

def distance (q:CPoint) :Double

def move (dx:Double,dy:Double):CPoint
def add (q:CPoint):CPoint

def rotate (theta:Double):CPoint

def isEqual (q:CPoint):Boolean

def isOrigin () :Boolean

def color ():Color
def updateColor (nc:Color):CPoint

// bridge methods

def distance (q:Point):Double
def add (q:Point):Point

def isEqual (q:Point):Boolean

Note that we have put the helper functions in the module, marking them private so that
they are not available from outside the module. However, they are available from all the
code within the module, including the two representation classes defined there.

Note the delegation and reconstruction that occurs in methods move (), add (), and rotate ().
Also, note that we can use some delegation in isEqual() as well. And this is the case for
both CartesianCPoint and PolarCPoint.

We can now look at a similar version but using inheritance, as we have done before, and now
using an explicit call to inherited methods to turn those methods that call the delegate and
reconstruct the result into methods that explicitly call inherited methods and reconstruct
the result.

object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint
new CartesianCPoint(x,y,c)

def polar(r:Double,theta:Double,c:Color):CPoint
if (r<0)
throw new Error("r negative")
else
new PolarCPoint(r,theta,c)

private def reconstructCart (p:Point,c:Color):CPoint =
new CartesianCPoint (p.xCoord(),p.yCoord(),c)

222

private def reconstructPolar (p:Point,c:Color):CPoint =
new PolarCPoint(p.distanceFromOrigin(),
p.angleWithXAxis(),c)

private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CartesianPoint(xpos,ypos) with CPoint {

def distance (q:CPoint):Double =
super [CartesianPoint] .distance(q)

override def move (dx:Double,dy:Double):CPoint =
reconstructCart (super [CartesianPoint] .move (dx,dy),c)

def add (q:CPoint):CPoint =
reconstructCart (super [CartesianPoint].add(q),q.color())

override def rotate (t:Double):CPoint =
reconstructCart (super [CartesianPoint] .rotate(t),c)

def isEqual (q:CPoint):Boolean =
super [CartesianPoint] .isEqual(q) && (c==q.color())

def color ():Color = c

def updateColor (nc:Color):CPoint =
new CartesianCPoint (xpos,ypos,nc)

// BRIDGE METHODS

override def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

// CANONICAL METHODS

override def toString ():String =
"cartesian(" + xpos + "," + ypos + "," + c + ")"

override def equals (other : Any):Boolean =
other match {

223

case that : CPoint => this.isEqual(that)

case _ => false

}
override def hashCode ():Int =
41 x (

41 * (

41 + xpos.hashCode()
) + ypos.hashCode()
) + c.hashCode()

private class PolarCPoint (r:Double, theta:Double, c:Color)
extends PolarPoint(r,theta) with CPoint {

def distance (q:CPoint):Double =
super [PolarPoint] .distance(q)

override def move (dx:Double,dy:Double):CPoint =
reconstructCart (super [PolarPoint] .move(dx,dy),c)

def add (q:CPoint):CPoint =
reconstructCart (super [PolarPoint] .add(q),q.color())

override def rotate (angle:Double):CPoint =
reconstructPolar (super[PolarPoint] .rotate(angle),c)

def isEqual (q:CPoint):Boolean = {

super [PolarPoint] .isEqual(q) && c==q.color()
}

def color ():Color = ¢

def updateColor (nc:Color):CPoint =
new PolarCPoint(r,theta,nc)

// BRIDGE METHODS
override def isEqual (q:Point):Boolean = q match {

case cq:CPoint => isEqual(cq)
case _ => false

224

// CANONICAL METHODS

override def toString ():String =

"polar(” +r + "," + theta + "," + ¢c + ")"

override def equals (other : Any):Boolean =

other match {
case that : CPoint => this.isEqual(that)
case _ => false

override def hashCode ():Int =

trait

def
def
def
def
def
def
def
def
def
def

def
def

41 * (
41 * (
41 + r.hashCode()
) + theta.hashCode()
) + c.hashCode()

CPoint extends Point {

xCoord () :Double

yCoord () :Double

angleWithXAxis () :Double
distanceFromOrigin () :Double
distance (q:CPoint) :Double

move (dx:Double,dy:Double):CPoint
add (q:CPoint) :CPoint

rotate (theta:Double):CPoint
isEqual (q:CPoint):Boolean
isOrigin () :Boolean

color ():Color
updateColor (nc:Color):CPoint

// bridge methods

def
def

distance (q:Point):Double
add (q:Point) :Point

225

def isEqual (q:Point):Boolean
}

An interesting question for you to think about, suggested by a colleague: if you could change
the code for CartesianPoint and PolarPoint to maximize code reuse by inheritance, could
you do so in such a way that move (), add(), and rotate(), in particular, could be directly
inherited in CartesianCPoint and PolarCPoint? The answer is yes, if you're curious, and
it doesn’t require anything that we haven’t seen already.

226

