
Object-Oriented Design Lecture 16
CS 3500 Spring 2011 (Pucella) Tuesday, Mar 15, 2011

16 Code Reuse: Inheritance and Delegation

In this lecture, we revisit points and colored points, and see the extent to which we can
reuse code in the implementations of those ADTs. Until now, most of our reuse has been
client-centric. But there are lots of opportunities for code reuse on the implementation side.
Unfortunately, reuse is more subtle and problem-prone on the implementation side.

Before we start, recall our Point ADT:

CREATORS
cartesian : (Double,Double) -> Point
polar : (Double,Double) -> Point

OPERATIONS
xCoord : () -> Double
yCoord : () -> Double
angleWithXAxis : () -> Double
distanceFromOrigin : () -> Double
distance : (Point) -> Double
move : (Double,Double) -> Point
add : (Point) -> Point
rotate : (Double) -> Point
isEqual : (Point) -> Boolean
isOrigin : () -> Boolean

and our CPoint ADT:

CREATORS
cartesian : (Double,Double,Color) -> CPoint
polar : (Double,Double,Color) -> CPoint

OPERATIONS
xCoord : () -> Double
yCoord : () -> Double
angleWithXAxis : () -> Double
distanceFromOrigin : () -> Double
distance : (CPoint) -> Double

183



move : (Double,Double) -> CPoint
add : (CPoint) -> CPoint
rotate : (Double) -> CPoint
isEqual : (CPoint) -> Boolean
isOrigin : () -> Boolean
color : () -> Color
updateColor : (Color) -> CPoint

16.1 Innocuous Inheritance

Most object-oriented languages, including Scala, make a code reuse technique available to
you: inheritance. Inheritance lets you reuse implementation code. (Contrast this with
subclassing, which lets you reuse client code.) Inheritance is an implementation technique
— a client generally couldn’t care less if you implement something via inheritance or not.
Inheritance is related to subtyping, but it is a different notion. Unfortunately, most languages
conflate the two, which tends to confuse matters somewhat.

Inheritance is powerful, and like any powerful tool, its power must be wielded wisely. At its
core, inheritance is a very simple idea: when you create a subtype, instead of reimplemeting
every method in the subtype, you can just say that you will reuse methods that are already
defined in the supertype. This is often called extending a class — and the source of the
keyword extends that Scala and Java use to define subtypes. Inheritance basically lets
us only write the “new” stuff when defining a subtype. Everything else comes from the
definition of the supertype.

In my view, there are really two kinds of inheritance: innocuous, and non-innocuous. Innocu-
ous inheritance is completely unproblematic and a nice way to reuse code. Non-innocuous
inheritance is trickier and may introduce subtle bugs.

Innocuous inheritance is the idea that we have, say two class A and B that are subtypes of
another class C. Both A and B have a method m implemented in exactly the same way –
sometimes a helper function. The idea is that we can take that definition of m in A and
B and hoist it up into C. Then inheritance says that m is now available in A and B (just
like before), but it needs only be defined once. This is innocuous because m was defined to
work with A and B in the first place (since that’s where they lived before the move up the
subtyping hierarchy). We just changed the place where m was defined.

Non-innocuous inheritance is the idea that we have a class A that is a subtype of B, and B
has a method m that A wants to reuse, and therefore simply inherits it form B instead of
redefining it. The reason why this is different than the situation described in the previous
paragraph is that m is a method meant to work with B. That we are reusing it in A may
make sense, or may not, or may work slightly differently, because A makes some changes to
B, of which m is unaware. So we have to be more careful, and make sure that the behavior
that we expect from m is in fact the one we get when we use m in A.

184



I will return to non-innocuous inheritance in upcoming lectures, but for now, let’s use in-
nocuous inheritance to get us some code reuse. Consider the implementation of the Point
ADT we obtain if we apply the usual Interpreter Design Pattern:✞ ☎
object Point {

def cartesian(x:Double,y:Double):Point =
new CartesianPoint(x,y)

def polar(r:Double,theta:Double):Point =
if (r<0)
throw new Error("r negative")

else
new PolarPoint(r,theta)

private class CartesianPoint (xpos:Double, ypos:Double) extends Point {

def xCoord ():Double =
xpos

def yCoord ():Double =
ypos

def distanceFromOrigin ():Double =
math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double =
math.atan2(ypos,xpos)

def distance (q:Point):Double =
math.sqrt(math.pow(xpos - q.xCoord(),2) +

math.pow(ypos - q.yCoord(),2))

def move (dx:Double,dy:Double):Point =
Point.cartesian(xpos+dx, ypos+dy)

def add (q:Point):Point =
move(q.xCoord(), q.yCoord())

def rotate (t:Double):Point =
new CartesianPoint(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t))

185



def isEqual (q:Point):Boolean =
(xpos == q.xCoord()) && (ypos == q.yCoord())

def isOrigin ():Boolean =
(xpos == 0) && (ypos == 0)

// CANONICAL METHODS

override def toString ():String =
"cartesian(" + xpos + "," + ypos + ")"

override def equals (other : Any):Boolean =
other match {
case that : Point => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 + xpos.hashCode()

) + ypos.hashCode()
}

private class PolarPoint (r:Double, theta:Double) extends Point {

def xCoord ():Double = r * math.cos(theta)

def yCoord ():Double = r * math.sin(theta)

def angleWithXAxis ():Double = theta

def distanceFromOrigin ():Double = r

def distance (q:Point):Double =
math.sqrt(math.pow(xCoord() - q.xCoord(),2) +

math.pow(yCoord() - q.yCoord(),2))

def move (dx:Double,dy:Double):Point =
Point.cartesian(xCoord()+dx, yCoord()+dy)

186



def add (q:Point):Point =
move(q.xCoord(), q.yCoord())

def rotate (angle:Double):Point =
new PolarPoint(r, theta+angle)

private def normalize (angle:Double):Double =
if (angle >= 2*math.Pi)
normalize(angle-2*math.Pi)

else if (angle < 0)
normalize(angle+2*math.Pi)

else
angle

def isEqual (q:Point):Boolean = {
(r == q.distanceFromOrigin()) &&
(normalize(theta) == normalize(q.angleWithXAxis()))

}

def isOrigin ():Boolean = { r == 0 }

// CANONICAL METHODS

override def toString ():String =
"polar(" + r + "," + theta + ")"

override def equals (other : Any):Boolean =
other match {
case that : Point => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 *
(41 + r.hashCode()

) + theta.hashCode()
}

}

abstract class Point {

187



def xCoord ():Double
def yCoord ():Double
def angleWithXAxis ():Double
def distanceFromOrigin ():Double
def distance (q:Point):Double
def move (dx:Double,dy:Double):Point
def add (q:Point):Point
def rotate (theta:Double):Point
def isEqual (q:Point):Boolean
def isOrigin ():Boolean

}✝ ✆
We see that there is a lot of redundant code in classes CartesianPoint and PolarPoint —
specifically, methods distance(), move(), add(), and equals() are all essentially the same,
modulo some uses of xpos and ypos in CartesianPoint instead of the equivalent xCoord()
and yCoord().

We can hoist those common definitions into a common supertype. Now, Point would seem
a reasonable candidate here, and indeed, we can lift the common methods into Point, and
inheritance would make those available to its subtypes. But Point is abstract, and is accessi-
ble to the rest of the world, and any code we put in there will also be accessible to the rest of
the world — for instance, other classes that are subtypes of Point, such as CPoint, will also
inherit those definitions, which may not really make sense for them. To keep Point as ab-
stract as possible, let me instead define a new abstract class Common sitting midway between
CartesianPoint and PolarPoint, and Point. The sole purpose of Common is to serve as
a repository of the common methods between CartesianPoint and PolarPoint, and since
it will be a supertype of both, the common methods will be available to the subtypes by
inheritance. Here’s one way to do it:✞ ☎
object Point {

def cartesian(x:Double,y:Double):Point =
new CartesianPoint(x,y)

def polar(r:Double,theta:Double):Point =
if (r<0)
throw new Error("r negative")

else
new PolarPoint(r,theta)

private abstract class Common extends Point {

188



def distance (q:Point):Double =
math.sqrt(math.pow(xCoord() - q.xCoord(),2) +

math.pow(yCoord() - q.yCoord(),2))

def move (dx:Double,dy:Double):Point =
Point.cartesian(xCoord()+dx, yCoord()+dy)

def add (q:Point):Point =
move(q.xCoord(), q.yCoord())

override def equals (other : Any):Boolean =
other match {
case that : Point => this.isEqual(that)
case _ => false

}
}

private class CartesianPoint (xpos:Double, ypos:Double) extends Common
{

def xCoord ():Double =
xpos

def yCoord ():Double =
ypos

def distanceFromOrigin ():Double =
math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double =
math.atan2(ypos,xpos)

def rotate (t:Double):Point =
new CartesianPoint(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t))

def isEqual (q:Point):Boolean =
(xpos == q.xCoord()) && (ypos == q.yCoord())

def isOrigin ():Boolean =

189



(xpos == 0) && (ypos == 0)

// CANONICAL METHODS

override def toString ():String =
"cartesian(" + xpos + "," + ypos + ")"

override def hashCode ():Int =
41 * (
41 + xpos.hashCode()

) + ypos.hashCode()
}

private class PolarPoint (r:Double, theta:Double) extends Common {

def xCoord ():Double = r * math.cos(theta)

def yCoord ():Double = r * math.sin(theta)

def angleWithXAxis ():Double = theta

def distanceFromOrigin ():Double = r

def rotate (angle:Double):Point =
new PolarPoint(r, theta+angle)

private def normalize (angle:Double):Double =
if (angle >= 2*math.Pi)
normalize(angle-2*math.Pi)

else if (angle < 0)
normalize(angle+2*math.Pi)

else
angle

def isEqual (q:Point):Boolean = {
(r == q.distanceFromOrigin()) &&
(normalize(theta) == normalize(q.angleWithXAxis()))

}

def isOrigin ():Boolean = { r == 0 }

190



// CANONICAL METHODS

override def toString ():String =
"polar(" + r + "," + theta + ")"

override def hashCode ():Int =
41 *

(41 + r.hashCode()
) + theta.hashCode()
}

}

abstract class Point {
def xCoord ():Double
def yCoord ():Double
def angleWithXAxis ():Double
def distanceFromOrigin ():Double
def distance (q:Point):Double
def move (dx:Double,dy:Double):Point
def add (q:Point):Point
def rotate (theta:Double):Point
def isEqual (q:Point):Boolean
def isOrigin ():Boolean

}✝ ✆
This trick can be pulled off pretty much any time you have two identical methods in two
subtypes.

Before turning to non-innocuous forms of inheritance, let’s take a detour via another, simpler,
form of code reuse in implementations, that happens to provide a nice path to understanding
inheritance in general.

16.2 Delegation

Consider the implementation of ADT Point above — either one, the one with the Common
class or the one without.

Now also consider the implementation of ADT CPoint, again via the Interpreter Design
Pattern:

191



✞ ☎
object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint =
new CartesianCPoint(x,y,c)

def polar(r:Double,theta:Double,c:Color):CPoint =
if (r<0)
throw new Error("r negative")

else
new PolarCPoint(r,theta,c)

private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CPoint {

def xCoord ():Double =
xpos

def yCoord ():Double =
ypos

def distanceFromOrigin ():Double =
math.sqrt(xpos*xpos+ypos*ypos)

def angleWithXAxis ():Double =
math.atan2(ypos,xpos)

def distance (q:CPoint):Double =
math.sqrt(math.pow(xpos - q.xCoord(),2) +

math.pow(ypos - q.yCoord(),2))

def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xpos+dx, ypos+dy,c)

def add (q:CPoint):CPoint =
new CartesianCPoint(xpos+q.xCoord(),ypos+q.yCoord(),q.color())

def rotate (t:Double):CPoint =
new CartesianCPoint(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t),
c)

192



def isEqual (q:CPoint):Boolean =
(xpos == q.xCoord()) && (ypos == q.yCoord()) && (c==q.color())

def isOrigin ():Boolean =
(xpos == 0) && (ypos == 0)

def color ():Color = c

def updateColor (nc:Color):CPoint =
new CartesianCPoint(xpos,ypos,nc)

// BRIDGE METHODS

def distance (q:Point):Double =
Point.cartesian(xpos,ypos).distance(q)

def add (q:Point):Point =
Point.cartesian(xpos,ypos).add(q)

def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

}

// CANONICAL METHODS

override def toString ():String =
"cartesian(" + xpos + "," + ypos + "," + c + ")"

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 * (
41 + xpos.hashCode()

) + ypos.hashCode()

193



) + c.hashCode()
}

private class PolarCPoint (r:Double, theta:Double, c:Color)
extends CPoint {

def xCoord ():Double = r * math.cos(theta)

def yCoord ():Double = r * math.sin(theta)

def angleWithXAxis ():Double = theta

def distanceFromOrigin ():Double = r

def distance (q:CPoint):Double =
math.sqrt(math.pow(xCoord() - q.xCoord(),2) +

math.pow(yCoord() - q.yCoord(),2))

def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xCoord()+dx, yCoord()+dy,c)

def add (q:CPoint):CPoint =
new CartesianCPoint(xCoord()+q.xCoord(),

yCoord()+q.yCoord(),
q.color())

def rotate (angle:Double):CPoint =
new PolarCPoint(r, theta+angle,c)

private def normalize (angle:Double):Double =
if (angle >= 2*math.Pi)
normalize(angle-2*math.Pi)

else if (angle < 0)
normalize(angle+2*math.Pi)

else
angle

def isEqual (q:CPoint):Boolean = {
(r == q.distanceFromOrigin()) &&
(normalize(theta) == normalize(q.angleWithXAxis())) &&

194



c==q.color()
}

def isOrigin ():Boolean = { r == 0 }

def color ():Color = c

def updateColor (nc:Color):CPoint =
new PolarCPoint(r,theta,nc)

// BRIDGE METHODS

def distance (q:Point):Double =
Point.polar(r,theta).distance(q)

def add (q:Point):Point =
Point.polar(r,theta).add(q)

def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

}

// CANONICAL METHODS

override def toString ():String =
"polar(" + r + "," + theta + "," + c + ")"

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 * (
41 + r.hashCode()

) + theta.hashCode()
) + c.hashCode()

}
}

195



abstract class CPoint extends Point {
def xCoord ():Double
def yCoord ():Double
def angleWithXAxis ():Double
def distanceFromOrigin ():Double
def distance (q:CPoint):Double
def move (dx:Double,dy:Double):CPoint
def add (q:CPoint):CPoint
def rotate (theta:Double):CPoint
def isEqual (q:CPoint):Boolean
def isOrigin ():Boolean

def color ():Color
def updateColor (nc:Color):CPoint

// bridge methods
def distance (q:Point):Double
def add (q:Point):Point
def isEqual (q:Point):Boolean

}✝ ✆
As usual, because we want CPoint to be a subtype of Point, we need to implement bridge
methods. I’ve done them in a different way here — have a look.

Clearly, we could pull the same trick as we did in Point and hoist some of the common
definitions of methods from the implementation classes of CPoint into an abstract class.
But we can do better. Notice that there is a lot of code redundancy between CPoints and
Points. In fact, most of the methods for CPoints have been lifted from Point, and modified
slightly in a few cases.

So can we implement CPoint in such a way that we can reuse the effort we’ve put into Point?
The answer is yes, up to a point. The big problem right now is that Point is pretty well
sealed off. That was the point of the course until now: hide implementation details as much
as possible. But hiding implementation details makes it difficult to reuse implementation
code.

Thankfully, in this case, we can reuse implementation code without actually knowing how
Points are implemented. The idea is to consider a colored point to be simply a point with a
color attached. We know how to deal with points (we have a class Point to work with them),
so most of the work can be done there. So how we’re going to do this is as follows: in each of
the representation classes of CPoints, we will create a little underlying point by calling the
appropriate creator of Point with the same arguments as the representation. Methods of

196



CPoints that do not involve colors or do not need to construct CPoints will simply delegate
to the underlying Point we’ve created — which is called a delegate. This approach is called
delegation. Here’s the code:✞ ☎
object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint =
new CartesianCPoint(x,y,c)

def polar(r:Double,theta:Double,c:Color):CPoint =
if (r<0)
throw new Error("r negative")

else
new PolarCPoint(r,theta,c)

private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CPoint {

// delegate -- takes care of point-related operations

val del:Point = Point.cartesian(xpos,ypos)

// these methods can all be delegated

def xCoord ():Double = del.xCoord()
def yCoord ():Double = del.yCoord()
def distanceFromOrigin ():Double = del.distanceFromOrigin()
def angleWithXAxis ():Double = del.angleWithXAxis()
def distance (q:CPoint):Double = del.distance(q)
def isOrigin ():Boolean = del.isOrigin()

def distance (q:Point):Double = del.distance(q)
def add (q:Point):Point = del.add(q)

// these method cannot be easily delegated
// (they create new CPoints, or they rely on colors)

def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xpos+dx, ypos+dy,c)

def add (q:CPoint):CPoint =

197



new CartesianCPoint(xpos+q.xCoord(),ypos+q.yCoord(),q.color())

def rotate (t:Double):CPoint =
new CartesianCPoint(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t),
c)

def isEqual (q:CPoint):Boolean =
(xpos == q.xCoord()) && (ypos == q.yCoord()) && (c==q.color())

def color ():Color = c

def updateColor (nc:Color):CPoint =
new CartesianCPoint(xpos,ypos,nc)

// BRIDGE METHODS

def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

}

// CANONICAL METHODS

override def toString ():String =
"cartesian(" + xpos + "," + ypos + "," + c + ")"

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 * (
41 + xpos.hashCode()

) + ypos.hashCode()
) + c.hashCode()

}

198



private class PolarCPoint (r:Double, theta:Double, c:Color) extends
CPoint {

// delegate

val del:Point = Point.polar(r,theta)

def xCoord ():Double = del.xCoord()
def yCoord ():Double = del.yCoord()
def distanceFromOrigin ():Double = del.distanceFromOrigin()
def angleWithXAxis ():Double = del.angleWithXAxis()
def distance (q:CPoint):Double = del.distance(q)
def isOrigin ():Boolean = del.isOrigin()

def distance (q:Point):Double = del.distance(q)
def add (q:Point):Point = del.add(q)

def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xCoord()+dx, yCoord()+dy,c)

def add (q:CPoint):CPoint =
new CartesianCPoint(xCoord()+q.xCoord(),yCoord()+q.yCoord(),q.color

())

def rotate (angle:Double):CPoint =
new PolarCPoint(r, theta+angle,c)

private def normalize (angle:Double):Double =
if (angle >= 2*math.Pi)
normalize(angle-2*math.Pi)

else if (angle < 0)
normalize(angle+2*math.Pi)

else
angle

def isEqual (q:CPoint):Boolean = {
(r == q.distanceFromOrigin()) &&
(normalize(theta) == normalize(q.angleWithXAxis())) &&

199



c==q.color()
}

def color ():Color = c

def updateColor (nc:Color):CPoint =
new PolarCPoint(r,theta,nc)

// BRIDGE METHODS

def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

}

// CANONICAL METHODS

override def toString ():String =
"polar(" + r + "," + theta + "," + c + ")"

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 * (
41 + r.hashCode()

) + theta.hashCode()
) + c.hashCode()

}
}

abstract class CPoint extends Point {

def xCoord ():Double
def yCoord ():Double
def angleWithXAxis ():Double
def distanceFromOrigin ():Double

200



def distance (q:CPoint):Double
def move (dx:Double,dy:Double):CPoint
def add (q:CPoint):CPoint
def rotate (theta:Double):CPoint
def isEqual (q:CPoint):Boolean
def isOrigin ():Boolean

def color ():Color
def updateColor (nc:Color):CPoint

// bridge methods
def distance (q:Point):Double
def add (q:Point):Point
def isEqual (q:Point):Boolean

}✝ ✆
Note what is going on — we implement all methods in the representation classes CartesianCPoint
and PolarCPoint, except that for many of these methods, we delegate to the underlying
point that we constructed when we instantiated the representation. In this way, we get to
reuse code from the Point class. Note that this does not rely on inheritance, or in fact in
even knowing how Points are implemented. The reason why the code above is important is
that we can think of (non-innocuous) inheritance as a form of implicit delegation, and the
above code will correspond pretty closely to what our code using inheritance will do, except
where everything is spelled out completely.

The main purpose of the code above is to serve as a starting point to understand non-
innocuous inheritance. However, if we truly wanted to use the code above, we could improve
it by noticing that there are a lot of methods in common between CartesianCPoint and
PolarCPoint — all of those involving delegation, for instance — especially after we replace
a few xpos and ypos in CartesianCPoint by xCoord() and yCoord(), respectively, There,
we could pull off the trick from §16.1 and define an abstract class Common sitting above
CartesianCPoint and PolarCPoint and implementing the methods in common between
the two classes and making them available by (innocuous inheritance). Here is the code:✞ ☎
object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint =
new CartesianCPoint(x,y,c)

def polar(r:Double,theta:Double,c:Color):CPoint =
if (r<0)
throw new Error("r negative")

else

201



new PolarCPoint(r,theta,c)

private abstract class Common extends CPoint {

// need to delcare that there will be a ’del’ field in
// the subtypes for this class to compile

val del : Point

def xCoord ():Double = del.xCoord()
def yCoord ():Double = del.yCoord()
def distanceFromOrigin ():Double = del.distanceFromOrigin()
def angleWithXAxis ():Double = del.angleWithXAxis()
def distance (q:CPoint):Double = del.distance(q)
def isOrigin ():Boolean = del.isOrigin()

def distance (q:Point):Double = del.distance(q)
def add (q:Point):Point = del.add(q)

def move (dx:Double,dy:Double):CPoint =
new CartesianCPoint(xCoord()+dx, yCoord()+dy,c)

def add (q:CPoint):CPoint =
new CartesianCPoint(xCoord()+q.xCoord(),yCoord()+q.yCoord(),q.color

())

def color ():Color = c

def isEqual (q:Point):Boolean = q match {
case cq:CPoint => isEqual(cq)
case _ => false

}

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)
case _ => false

}
}

202



private class CartesianCPoint (xpos:Double, ypos:Double, c:Color)
extends CPoint {

// delegate -- takes care of point-related operations

val del:Point = Point.cartesian(xpos,ypos)

def rotate (t:Double):CPoint =
new CartesianCPoint(xpos*math.cos(t)-ypos*math.sin(t),

xpos*math.sin(t)+ypos*math.cos(t),
c)

def isEqual (q:CPoint):Boolean =
(xpos == q.xCoord()) && (ypos == q.yCoord()) && (c==q.color())

def updateColor (nc:Color):CPoint =
new CartesianCPoint(xpos,ypos,nc)

// CANONICAL METHODS

override def toString ():String =
"cartesian(" + xpos + "," + ypos + "," + c + ")"

override def hashCode ():Int =
41 * (
41 * (
41 + xpos.hashCode()

) + ypos.hashCode()
) + c.hashCode()

}

private class PolarCPoint (r:Double, theta:Double, c:Color) extends
CPoint {

// delegate

val del:Point = Point.polar(r,theta)

def rotate (angle:Double):CPoint =
new PolarCPoint(r, theta+angle,c)

203



private def normalize (angle:Double):Double =
if (angle >= 2*math.Pi)
normalize(angle-2*math.Pi)

else if (angle < 0)
normalize(angle+2*math.Pi)

else
angle

def isEqual (q:CPoint):Boolean = {
(r == q.distanceFromOrigin()) &&
(normalize(theta) == normalize(q.angleWithXAxis())) &&
c==q.color()

}

def updateColor (nc:Color):CPoint =
new PolarCPoint(r,theta,nc)

// CANONICAL METHODS

override def toString ():String =
"polar(" + r + "," + theta + "," + c + ")"

override def hashCode ():Int =
41 * (
41 * (
41 + r.hashCode()

) + theta.hashCode()
) + c.hashCode()

}
}

abstract class CPoint extends Point {

def xCoord ():Double
def yCoord ():Double
def angleWithXAxis ():Double
def distanceFromOrigin ():Double
def distance (q:CPoint):Double
def move (dx:Double,dy:Double):CPoint
def add (q:CPoint):CPoint

204



def rotate (theta:Double):CPoint
def isEqual (q:CPoint):Boolean
def isOrigin ():Boolean

def color ():Color
def updateColor (nc:Color):CPoint

// bridge methods
def distance (q:Point):Double
def add (q:Point):Point
def isEqual (q:Point):Boolean

}✝ ✆
This is already a big improvement. The representation classes now truly only hold what is
specific to the representations — everything else is pushed to the Common superclass.

16.3 Another Example of Delegation

The code in §16.2 was written in such a way to allow us to make the jump to the corresponding
code that uses inheritance (which we will see next).

However, delegation by itself has its uses, and if we wanted to use delegation seriously, we
could have structured our code to take advantage of it much more than we have above.

To illustrate another way in which you can set up delegation to reuse code from the imple-
mentation of another ADT, here is another implementation of CPoint. Here, we push the
idea that a CPoint is just a Point with a color attached to its limit, by simply representing
a CPoint as a combination of a Point and a color. The code has the same structure as that
obtained from the Interpreter Design Pattern, but instead of there being two representation
classes, there is a single representation class CPointImpl that wraps a color around a Point.
Most methods delegate to the underlying Point, involving color only when needed.✞ ☎
object CPoint {

def cartesian(x:Double,y:Double,c:Color):CPoint = {
// create delegate
val del:Point = Point.cartesian(x,y)
new CPointImpl(del,c)

}

def polar(r:Double,theta:Double,c:Color):CPoint = {
// create delegate
val del:Point = Point.polar(r,theta)
new CPointImpl(del,c)

205



}

private class CPointImpl (del:Point, c:Color) extends CPoint {

// easy delegations

def xCoord ():Double = del.xCoord()
def yCoord ():Double = del.yCoord()
def distanceFromOrigin ():Double = del.distanceFromOrigin()
def angleWithXAxis ():Double = del.angleWithXAxis()
def distance (q:CPoint):Double = del.distance(q)
def isOrigin ():Boolean = del.isOrigin()

// delegations where we do something extra

def isEqual (q:CPoint):Boolean =
(del.isEqual(q) && c==q.color())

// delegations where we need to "rebuild" a CPoint

def move (dx:Double,dy:Double):CPoint =
new CPointImpl(del.move(dx,dy),c)

def add (q:CPoint):CPoint =
new CPointImpl(del.add(q),q.color())

def rotate (t:Double):CPoint =
new CPointImpl(del.rotate(t),c)

// methods specific to colored points

def color ():Color = c

def updateColor (nc:Color):CPoint =
new CPointImpl(del,nc)

// BRIDGE METHODS (some by delegation):

def distance (q:Point):Double = del.distance(q)

def add (q:Point):Point = del.add(q)

206



def isEqual (q:Point):Boolean = q match {
case cq:CPoint => this.isEqual(cq)
case _ => false

}

// CANONICAL METHODS

override def toString ():String =
"cpoint("+del+","+c+")"

override def equals (other : Any):Boolean =
other match {
case that : CPoint => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 + del.hashCode()

) + c.hashCode()
}

}

abstract class CPoint extends Point {
def xCoord ():Double
def yCoord ():Double
def angleWithXAxis ():Double
def distanceFromOrigin ():Double
def distance (q:CPoint):Double
def move (dx:Double,dy:Double):CPoint
def add (q:CPoint):CPoint
def rotate (theta:Double):CPoint
def isEqual (q:CPoint):Boolean
def isOrigin ():Boolean
def color ():Color
def updateColor (nc:Color):CPoint

// bridge methods
def distance (q:Point):Double
def add (q:Point):Point
def isEqual (q:Point):Boolean

}✝ ✆
207


