
Object-Oriented Design Lecture 13
CS 3500 Spring 2011 (Pucella) Tuesday, Feb 22, 2011

13 Subtyping Multiple Types

The goal in this lecture is to look at creating types that are subtypes of multiple types at
the same time, and why that might be useful. Intuitively, this will enable even more code
reuse.

Let’s start with the implementation of the Point and CPoint ADT from last lecture. I
won’t give you the whole code, just remind you of the abstract classes Point and CPoint:! "
abstract class Point {

def xCoord ():Double
def yCoord ():Double
def move (dx:Double,dy:Double):Point
def rotate(t:Double):Point
def add (p:Point):Point
def isEqual (p:Point):Boolean

}

abstract class CPoint extends Point {

def color ():Color
def updateColor (c:Color):CPoint

def xCoord ():Double
def yCoord ():Double
def move (dx:Double,dy:Double):CPoint
def rotate (t:Double):CPoint
def add (cp:CPoint):CPoint
def isEqual (cp:CPoint):Boolean

// bridge methods
def add (p:Point):Point
def isEqual (p:Point):Boolean

}# $
141



We have implementations of these.

Suppose we do something similar for rectangles, defining both rectangles and colored rect-
angles. Here’s the Rect ADT:

CREATORS
create : (Point, Point) -> Rect

OPERATIONS
upperLeft : () -> Point
lowerRight : () -> Point
move : (Double, Double) -> Rect
within : (Point) -> Rect
isEqual : (Rect) -> Boolean

with specification:

create(ul,lr).upperLeft() = ul

create(ul,lr).lowerRight() = lr

create(ul,lr).move(dx,dy) = create(ul.move(dx,dy), lr.move(dx,dy))

create(ul,lr).within(p)

=






true if ul.xCoord() ≤ p.xCoord() ≤ lr.xCoord()

and lr.yCoord() ≤ p.yCoord() ≤ ul.yCoord()

false otherwise

create(ul,lr).isEqual(r)

=






true if ul.isEqual(r.upperLeft()) = true

and lr.isEqual(r.lowerRight()) = true

false otherwise

It’s a straightforward exercise to implement this ADT using the Specification Design Pattern:! "
object Rect {

def create (p:Point, q:Point):Rect =
if (p.xCoord() <= q.xCoord() &&

p.yCoord() <= q.yCoord())
new RectImpl(p,q)

else
throw new IllegalArgumentException("Rect.create()")

private class RectImpl (ul:Point, lr:Point) extends Rect {
def upperLeft ():Point = ul

142



def lowerRight ():Point = lr

def move (dx:Double,dy:Double):Rect =
new RectImpl(ul.move(dx,dy), lr.move(dx,dy))

def within (p:Point):Boolean = {
ul.xCoord() <= p.xCoord() && p.xCoord() <= lr.xCoord() &&
ul.yCoord() <= p.yCoord() && p.yCoord() <= lr.yCoord()

}

def isEqual (r:Rect):Boolean = {
ul==r.upperLeft() && lr==r.lowerRight()

}

// CANONICAL

override def toString ():String =
"rect(" + ul + "," + lr + ")"

override def equals (other : Any):Boolean =
other match {
case that : Rect => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 + ul.hashCode()

) + lr.hashCode()
}

}

abstract class Rect {

def upperLeft ():Point
def lowerRight ():Point
def move (dx:Double,dy:Double):Rect
def within (p:Point):Boolean
def isEqual (r:Rect):Boolean

}# $
143



What about colored rectangles? The CRect ADT is what you would expect:

CREATORS
create : (Point, Point, Color) -> CRect

OPERATIONS
upperLeft : () -> Point
lowerRight : () -> Point
move : (Double, Double) -> CRect
within : (Point) -> CRect
isEqual : (CRect) -> Boolean
color : () -> Color
updateColor : (Color) -> CRect

The specification I will leave as an exercise — it is a simple variation on the specification for
ADT Rect.

Implementing the CRect ADT so that it is a subtype of Rect is straightforward using the
Specification Design Pattern and a bridge method for isEqual().! "
object CRect {

def create (p:Point, q:Point, c:Color):CRect =
if (p.xCoord() <= q.xCoord() &&

p.yCoord() <= q.yCoord())
new CRectImpl(p,q,c)

else
throw new IllegalArgumentException("CRect.create()")

private class CRectImpl (ul:Point, lr:Point, col:Color) extends CRect {
def color ():Color = col

def updateColor (c:Color):CRect =
new CRectImpl(ul,lr,c)

def upperLeft ():Point = ul
def lowerRight ():Point = lr

def move (dx:Double,dy:Double):CRect =
new CRectImpl(ul.move(dx,dy), lr.move(dx,dy), col)

def within (p:Point):Boolean = {
ul.xCoord() <= p.xCoord() && p.xCoord() <= lr.xCoord() &&
ul.yCoord() <= p.yCoord() && p.yCoord() <= lr.yCoord()

144



}

def isEqual (cr:CRect):Boolean = {
ul==cr.upperLeft() && lr==cr.lowerRight() && color==cr.color()

}

def isEqual (r:Rect):Boolean =
r match {
case cr:CRect => this.isEqual(cr)
case _ => false

}

// CANONICAL

override def toString ():String =
"crect(" + ul + "," + lr + "," + color + ")"

override def equals (other : Any):Boolean =
other match {
case that : CRect => this.isEqual(that)
case _ => false

}

override def hashCode ():Int =
41 * (
41 * (
41 + ul.hashCode()

) + lr.hashCode()
) + col.hashCode()

}
}

abstract class CRect extends Rect {

def color ():Color
def updateColor (c:Color):CRect

def upperLeft ():Point
def lowerRight ():Point
def move (dx:Double,dy:Double):CRect
def within (p:Point):Boolean

145



def isEqual (r:CRect):Boolean

// bridge method
def isEqual (r:Rect):Boolean

}# $
So CPoint is a subtype of Point, and CRect is a subtype of Rect. We already know we can
get some code reuse out of those relationships — any function that works on Points will
work on CPoints, and any function that works on Rects will work on CRects.

Now, suppose we wanted to write a function that extracted the color out of a colored “shape”
and complemented it. (ADT Color has an operation complement() that returns the com-
plement of a color on the color wheel.) Right now, given our definition, we would have to
write two functions:

def colorComplementPoint (c:CPoint):Color =
c.color().complement()

def colorComplementRect (c:CRect):Color =
c.color().complement()

The fact that both of those functions look exactly the same except for the type suggest that
there might be a way to write a single function to work with both CPoints and CRects.
Unfortunately, there is no type that is both a supertype of CPoint and CRect and that has
a color() operation.

So how about we introduce one, call it Colored, and make sure that CPoint and CRect are
both subtypes of Colored, on top of being subtypes of Point and Rect, respectively.

What we would like to define is something like an abstract class Colored:

abstract class Colored {
def color ():Color

}

and when we define, say, CPoint, we would say:

abstract class CPoint extends Point,Colored {

def color ():Color
def updateColor (c:Color):CPoint

def xCoord ():Double
def yCoord ():Double

146



def move (dx:Double,dy:Double):CPoint
def rotate (t:Double):CPoint
def add (cp:CPoint):CPoint
def isEqual (cp:CPoint):Boolean

// bridge methods
def add (p:Point):Point
def isEqual (p:Point):Boolean

}

Unfortunately, this doesn’t work. (It works in some languages, just not the ones we’re using.)
We can technically only extend one other class. If we want to be a subtype of other types,
we have to make those types traits. Traits are reminiscent of Java interfaces, except that
they let you do more. We’ll see what that “more” denotes later. For the time being, think
of traits as simply abstract classes. Traits are easy to define:

trait Colored {
def color ():Color

}

To use the Colored trait, redefine both abstract classes CPoint and CRect:

abstract class CPoint extends Point with Colored {

def color ():Color
def updateColor (c:Color):CPoint

def xCoord ():Double
def yCoord ():Double
def move (dx:Double,dy:Double):CPoint
def rotate (t:Double):CPoint
def add (cp:CPoint):CPoint
def isEqual (cp:CPoint):Boolean

// bridge methods
def add (p:Point):Point
def isEqual (p:Point):Boolean

}

abstract class CRect extends Rect with Colored {

def color ():Color

147



def updateColor (c:Color):CRect

def upperLeft ():Point
def lowerRight ():Point
def move (dx:Double,dy:Double):CRect
def within (p:Point):Boolean
def isEqual (r:CRect):Boolean

// bridge methods
def isEqual (r:Rect):Boolean

}

Now, I have both CPoint and CRect being subtypes of Colored, so I can replace my two
functions above with a single function that can work with any value of type Colored:

def colorComplement (c:Colored):Color =
c.color().complement()

We can call colorComplement() with a CPoint or a CRect, because the type checker will
insert an upcast automatically, since both CPoint and CRect are subtypes of Colored.

That takes care of color(). Now, what about updateColor()? Suppose we wanted to
create a shape that looked just like some other shape but colored with the complement of
that other shape? This is easy to do for CPoint:

def makeComplementPoint (c:CPoint):CPoint =
c.updateColor(c.color().complement())

And we can write a similar function for CRect:

def makeComplementRect (c:CRect):CRect =
c.updateColor(c.color().complement())

Again, the same code occurs in both function, so maybe we can write a single function
instead. As before, we need to make sure we have a supertype for both CPoint and CRect
with a suitable updateColor() method declared.

The easiest might just be to add updateColor() to traitColored. But we hit a bit of a snag
— updateColor() returns a result of the same type as the class in which it lives. So we
cannot easily abstract it away in Colored.

The solution is to parameterize Colored by the result type of the updateColor() operation:! "
trait Colored[A] {
def color ():Color

148



def updateColor (c:Color):A
}# $

Think of the A in trait Colored[A] as a parameter like a parameter in a method. When
we use Colored, we get to choose the exact type we want to instantiate the parameter [A]
to. Such a parameterized trait is sometimes called a generic trait.

With this change, the abstract classes for CPoint and CRect look like:! "
abstract class CPoint extends Point with Colored[CPoint] {

def color ():Color
def updateColor (c:Color):CPoint

def xCoord ():Double
def yCoord ():Double
def move (dx:Double,dy:Double):CPoint
def rotate(t:Double):CPoint
def add (cp:CPoint):CPoint
def isEqual (cp:CPoint):Boolean

// bridge methods
def add (p:Point):Point
def isEqual (p:Point):Boolean

}

abstract class CRect extends Rect with Colored[CRect] {

def color ():Color
def updateColor (c:Color):CRect

def upperLeft ():Point
def lowerRight ():Point
def move (dx:Double,dy:Double):CRect
def within (p:Point):Boolean
def isEqual (r:CRect):Boolean

// bridge methods
def isEqual (r:Rect):Boolean

}# $
Think about it, in CPoint, the updateColor() method should take a Color and return a
CPoint, so we instantiate Colored to Colored[CPoint], and similarly for CRect.

149



Now we can write a single function makeComplement() that creates a shape of the same kind
as the argument, but with its color replaced by its complement:

def makeComplement[A] (c:Colored[A]):A =
c.updateColor(c.color().complement())

Note that because we want this function to work on Colored[A] instances for any kind of
A, we need to use a generic method.

Here’s some sample code that illustrates this:

val q2 : CPoint = CPoint.cartesian(1,2,Color.red())
println("q2 = " + q2)
println("Complementing q2 = " + makeComplement[CPoint](q2))

val p3:Point = Point.cartesian(20,30)
val q3:Point = CPoint.cartesian(40,60,Color.red())
val r2:CRect = CRect.create(p3,q3,Color.blue())
println("r2 = " + r2)
println("Complementing r2 = " + makeComplement[CRect](r2))

which yiels the result:

q2 = cpoint(1.0,2.0,red)
Complementing q2 = cpoint(1.0,2.0,green)
r2 = crect(point(20.0,30.0),cpoint(40.0,60.0,red),blue)
Complementing r2 = crect(point(20.0,30.0),cpoint(40.0,60.0,red),orange)

Of course, now that we have changed the definition of Colored by giving it a parameter,
our old colorComplement() method doesn’t compile anymore — the system complains that
Colored needs a parameter. Here is the updated version of colorComplement():

def colorComplement[A] (c:Colored[A]):Color =
c.color().complement()

150


