
Object-Oriented Design Lecture 21
CS 3500 Fall 2009 (Pucella) Tuesday, December 1, 2009

21 The Model-View-Controller Pattern

The design patterns we’ve seen until now are either small-scale (the Specification pattern
for how to derive an implementation form an ADT, for instance, talking about a single
class hierarchy) or medium-scale (the Observer pattern, regulating the interaction between
distinct classes).

We focus now on a design pattern that pertains to the structuring of an application as a
whole. Those often are called architectural patterns, because they involve the design of the
architecture of an application. Such patterns are useful to figure out where to start when
implementing an application.

The Model-View-Controller (MVC for short) pattern goes back to the 70s, in the Smalltalk
community. The idea of the MVC pattern is to separate the following aspects of an applica-
tion:

• the model : capturing the state of an application and its internal logic dictating how
its state changes when actions are performed;

• the controller : capturing how the model is informed of actions that are performed
(generally, this is driven by input from the user);

• the view : capturing how the application displays its results to the user.

Why might we want to do that? This decoupling is useful for modern applications which
have sometimes specific requirements:

• they may need to work on multiple platforms or operating systems — in which case
the model is usually the same, but the details of how to get the view working for a
particular operating system may be different, or how to get input from the user; even
in the case of a single operating system, we may want an application to have a view
that suitable for a mobile phone, and a view suitable for a desktop.

• they may require different models based on the size of data they operate on, or where
they store their data (for instance, there may be a need to backup the application
state for server application, requiring a different model than one for which the state is
completely in memory.)

• they may need to work on the web, there the view (generally HTML code rendered in
the browser) can change pretty drastically based on other requirements.

1

The interaction between the three components is slightly different depending on the appli-
cation and who you talk to, but a first approximation can be captured by the following
diagram:

+------------+

+----->| MODEL |----+

| +------------+ |

action | | | update

| | feedback |

| V V

+--------------+ +--------+

| CONTROLLER | | VIEW |

+--------------+ +--------+

Roughly, the controller is in charge of directing the model by invoking actions, and the
model informs the view when the state has changed so that the view can update its display
(thus, the view is really an observer of the model). Often, the model sends feedback to the
controller, because changes in the state of the application may change the possibilities open
to the controller in terms of what actions can be performed.

21.1 An Example: A Maze Game

The best way to illustrate an architectural pattern is to give a sample application imple-
mented using the pattern. The example I have is a simple maze game. The code for it is
available on the website, and I’ll just give the highlights here.

The game: you’re in a maze, and you have the find the exit. Movement in the maze involves
moving forward, moving back, turning left, and turning right. For simplicity, we’ll consider
a model of the maze where the maze is on a square grid, movement back and forth is done
one square at a time, and the directions one can be facing are one of north, east, south, or
west.

Let’s first describe the interfaces capturing the functionality of the model, the controller,
and the view for the Maze game.� �
public interface Model {

public boolean performLeft ();
public boolean performRight ();
public boolean performForward ();
public boolean performBack ();

}� �
2

Basically, a model can respond to request to perform actions “turn left”, “turn right”, “move
forward”, and “move backwards” applied to the player’s position and direction. When we
create a model, we will supply it with a view and a controller, so that it can interact with
them.� �
public interface Controller {

public void attachToModel (Model m);
public void run ();

}� �
A controller, on the other hand, once created, can either be attached to a model (when the
model is created, it will generally attach itself to the controller it is passed as an argument
— see below — we need to do this kind of convolution because there is a dependency going
both ways between a model and a controller, which both need to know about each other),
or it can be “run”, meaning that it starts controlling the model.� �
public interface View {

public void attachToModel (Model m);
public void update (Visible vis);
public void win ();

}� �
A view, just like a controller, can be attached to a model (and for the same reasons), and
it can updated (to display the current position of the player and presumably what he or she
sees), or it can be told that the game is won, in order to congratulate the player. To ensure
that the update does not depend too much on the details of the implementation of the model,
we use an interface Visible to abstract away the information that the model sends to the
view about what the player sees. For simplicity, I defined Visible to be a set of predicates
that lets the view ask about what openings are visible in the current square (to the left, to
the right, to the front), which openings are visible one square in front of the player, if visible
(to the front left, to the front right, to the front front), and one square beyond, if visible
(to the front front left, to the front front right, to the front front front). The view can also
query for whether the square in front or the one beyond is a winning square.� �
public interface Visible {

public Direction direction ();
public boolean left ();
public boolean right ();
public boolean front ();
public boolean frontleft ();
public boolean frontright ();

3

public boolean frontfront ();
public boolean frontfrontleft ();
public boolean frontfrontright ();
public boolean frontfrontfront ();
public boolean frontwin ();
public boolean frontfrontwin ();

}� �
And that’s it. That defines the interactions between the model, the controller, and the view,
in the context of the Maze game. Everything else is filling in the details.

We have interface, now we need implementations for those interfaces. First, let’s define the
basic model for the maze, which represents the maze as a set of connected cells, where each
cell can be connected to up to four other cells, one in each of the four cardinal directions.� �
public class BasicModel implements Model {

private View view;
private Controller controller;

private Cell cell;
private Direction direction;

protected BasicModel (View v, Controller c) {
view = v;
controller = c;

}

public static BasicModel create (View v, Controller c) {
BasicModel m = new BasicModel(v,c);
m.initializeMaze();
v.attachToModel(m);
c.attachToModel(m);
// initial display of information
m.updateView();
return m;

}

private static class BasicVisible implements Visible {
private Direction direction;
private boolean left,right,front;
private boolean fleft,fright,ffront;
private boolean ffleft,ffright,fffront;

4

private boolean fwin,ffwin;

public BasicVisible (Direction d, boolean l, boolean r, boolean f,
boolean fl, boolean fr, boolean ff,
boolean ffl, boolean ffr, boolean fff,
boolean fw, boolean ffw) {

direction=d;
left=l; right=r; front=f;
fleft=fl; fright=fr; ffront=ff;
ffleft=ffl; ffright=ffr; fffront=fff;
fwin=fw; ffwin=ffw;

}

public Direction direction () { return direction; }
public boolean left () { return left; }
public boolean right () { return right; }
public boolean front () { return front; }
public boolean frontleft () { return fleft; }
public boolean frontright () { return fright; }
public boolean frontfront () { return ffront; }
public boolean frontfrontleft () { return ffleft; }
public boolean frontfrontright () { return ffright; }
public boolean frontfrontfront () { return fffront; }
public boolean frontwin () { return fwin; }
public boolean frontfrontwin () { return ffwin; }

}

private boolean isOpening (Option<Cell> oc) {
return (!(oc.isNone()));

}

private void updateView () {
Visible vis;
boolean l = isOpening(cell.exit(direction.left()));
boolean r = isOpening(cell.exit(direction.right()));
Option<Cell> front = cell.exit(direction);
if (!isOpening(front)) {

view.update(new BasicVisible(direction,l,r,false,false,false,false,
false,false,false,false,false));

return;
}
boolean fl = isOpening(front.valOf().exit(direction.left()));

5

boolean fr = isOpening(front.valOf().exit(direction.right()));
Option<Cell> ffront = front.valOf().exit(direction);
boolean fwin = front.valOf().isWin();
if (!isOpening(ffront)) {

view.update(new BasicVisible(direction,l,r,true,fl,fr,false,
false,false,false,fwin,false));

return;
}
boolean ffl = isOpening(ffront.valOf().exit(direction.left()));
boolean ffr = isOpening(ffront.valOf().exit(direction.right()));
Option<Cell> fffront = ffront.valOf().exit(direction);
boolean ffwin = ffront.valOf().isWin();
view.update(new BasicVisible(direction,l,r,true,fl,fr,true,

ffl,ffr,isOpening(fffront),
fwin,ffwin));

}

private void initializeMaze () {
Cell[] cells = new Cell[8];

// create cells
for (int i=0; i<8; i++)

cells[i] = Cell.create();
Cell wincell = WinCell.create();

// connect cells
cells[0].connect(Direction.SOUTH,cells[1]);
cells[1].connect(Direction.SOUTH,cells[2]);
cells[2].connect(Direction.EAST,cells[3]);
cells[3].connect(Direction.EAST,cells[4]);
cells[4].connect(Direction.NORTH,cells[5]);
cells[5].connect(Direction.NORTH,cells[6]);
cells[6].connect(Direction.WEST,cells[7]);
cells[7].connect(Direction.WEST,cells[0]);

cells[4].connect(Direction.SOUTH,wincell);

// choose starting cell + starting direction
cell = cells[0];
direction = Direction.NORTH;

}

6

public boolean performLeft () {
direction=direction.left();
updateView();
return true;

}

public boolean performRight () {
direction=direction.right();
updateView();
return true;

}

public boolean performForward () {
Option<Cell> res = cell.exit(direction);
if (res.isNone())

return false;
cell=res.valOf();
updateView();
if (cell.isWin())

view.win();
return true;

}

public boolean performBack () {
Option<Cell> res = cell.exit(direction.opposite());
if (res.isNone())

return false;
cell=res.valOf();
updateView();
return true;

}
}� �
Private fields hold the view and controller the model is connected to, as well as a Cell

holding the current position of the player in the maze, as well as the direction the player is
facing. Directions are given as an enumeration type, which is a way to represent constants
in a nice way that allows you to define methods for those constants. I will send you to the
online Java tutorials for more details about enums, but here is the code for Direction:� �
public enum Direction {

NORTH, EAST, SOUTH, WEST;

7

public Direction left () {
switch(this) {
case NORTH:

return WEST;
case EAST:

return NORTH;
case SOUTH:

return EAST;
case WEST:

return SOUTH;
}
throw new Error("Unknown direction: " + this);

}

public Direction right () {
switch(this) {
case NORTH:

return EAST;
case EAST:

return SOUTH;
case SOUTH:

return WEST;
case WEST:

return NORTH;
}
throw new Error("Unknown direction: " + this);

}

public Direction opposite () {
switch(this) {
case NORTH: return SOUTH;
case EAST: return WEST;
case SOUTH: return NORTH;
case WEST: return EAST;
}
throw new Error("Unknown direction: " + this);

}
}� �
Intuitively, there are four constants of type Description, NORTH, SOUTH, EAST, and WEST,
and there are three methods defined for those constants, left(), right(), opposite(), that

8

gives us the direction 90 degrees counter-clockwise, 90 degrees clockwise, and 180 degrees
from the direction these methods are applied to.

Back to BasicModel: in the creator create(), we see that the model attaches itself to
the view and to the controller, after having initialized the maze — basically creating and
connecting the cells making up the maze, which also sets the starting cell and the starting
direction — and then calls helper method updateView() that will give the first rendering
to the player. That method takes the current cell and the cells in the direction the player
is facing and uses that information to create an instance of BasicVisible, which is a class
implementing the Visible interface, and that can be passed to the view for displaying
purposes.

Operations performLeft(), performRight(), performForward(), and performBack() up-
date the position or direction of the player, updating the view after every action.

I will not say much about cells, except to give their signature (the code is on the website, as
I said):� �

public static Cell create ();
public void connect (Direction d, Cell c);
public Option<Cell> exit (Direction d);
public boolean isWin ();� �

Once created, a cell is not connected to any other cell. Calling connect(d,c) mutates the
cell so that its exit in the d direction leads to cell c — this also has the effect of mutating cell
c so that its exit in the d.opposite() direction leads to the original cell. To get the exit of
a cell in a particular direction d, call exit(d) — the result is either none() if there is no exit
in that direction (i.e., it is a wall), or some(c) where c is the cell that the direction leads to.
Method isWin() checks whether the cell is a winning cell. (Winning cells are implemented
as a subclass of cells.)

So this essentially takes care of the model. What we’re missing is a controller and a view.
First, the controller. I’m going to describe a simple controller here, driven by commands
from the player that he or she types at a simple command line.� �
import java.io.∗;

public class TextController implements Controller {

private Option<Model> maze;

protected TextController () {
maze = Option.none();

}

9

public static TextController create () {
return new TextController();

}

public void attachToModel (Model m) {
maze = Option.some(m);

}

private String getInput () {

BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
String response = "";

try {
response = br.readLine();
if (response==null) {

return "";
}

} catch (IOException ioe) {
System.out.println("IO error reading from terminal\n");
System.exit(1);

}
return response;

}

private boolean process (String response) {
if (response.equals("forward") || response.equals("f"))

return maze.valOf().performForward();
else if (response.equals("back") || response.equals("b"))

return maze.valOf().performBack();
else if (response.equals("left") || response.equals("l"))

return maze.valOf().performLeft();
else if (response.equals("right") || response.equals("r"))

return maze.valOf().performRight();
else if (response.equals("quit") || response.equals("q"))

System.exit(0);
return false;

}

public void run () {
String response;

10

if (maze.isNone())
throw new Error("TextController not initialized with model");

while (true) {
System.out.print("> ");
response = getInput();
if (!process(response))

System.out.println("Cannot perform action");
}

}
}� �
Nothing really special here, it is similar to other command loops we have played with in
the last few lectures. The thing is that when a response is recognized as a command,
the appropriate method from the model is called, from that model that is attached to the
controller.

So the controller sends actions to the model, which invokes a view to display results to the
player. Here is a simple view, that textually describes what the player sees in his immediate
vicinity:� �
public class TextView implements View {

private Option<Model> maze;

protected TextView () {
maze = Option.none();

}

public static TextView create () {
return new TextView();

}

public void attachToModel (Model m) {
maze = Option.some(m);

}

private String status (boolean b) {
if (b)

return "open";
else

return "blocked";
}

11

public void update (Visible vis) {
System.out.println("Facing: " + vis.direction());
System.out.println("Passage in front is " + status(vis.front()));
System.out.println("Passage on left is " + status(vis.left()));
System.out.println("Passage on right is " + status(vis.right()));
if (vis.frontwin())

System.out.println("Winning square is up front");
}

public void win () {
System.out.println("You won");
System.exit(0);

}
}� �
It is pretty much self-explanatory.

Now that we have all the components of the application, we can connect them together to
create the Maze game with textual input and output:� �
public class MainText {

public static void main (String[] argv) {

View v = TextView.create();
Controller c = TextController.create();
Model m = BasicModel.create(v,c);

c.run();
}

}� �
And that’s it. Running it gives:

Facing: NORTH

Passage in front is blocked

Passage on left is blocked

Passage on right is open

> r

Facing: EAST

Passage in front is open

12

Passage on left is blocked

Passage on right is open

> f

Facing: EAST

Passage in front is open

Passage on left is blocked

Passage on right is blocked

> f

Facing: EAST

Passage in front is blocked

Passage on left is blocked

Passage on right is open

> r

Facing: SOUTH

Passage in front is open

Passage on left is blocked

Passage on right is open

> f

Facing: SOUTH

Passage in front is open

Passage on left is blocked

Passage on right is blocked

> f

Facing: SOUTH

Passage in front is open

Passage on left is blocked

Passage on right is open

Winning square is up front

> f

Facing: SOUTH

Passage in front is blocked

Passage on left is blocked

Passage on right is blocked

You won

What’s more exciting is that we can change the view or the controller, and get different
variants of the game. I won’t show it here, but in the code I give on the website is a different
view, the GUIView, which displays what the player sees as a 3D-ish rendering. Creating a
version of the Maze game with that view is a simple matter of using:� �
public class MainGUI {

public static void main (String[] argv) {

13

View v = GUIView.create();
Controller c = TextController.create();
Model m = BasicModel.create(v,c);

c.run();
}

}� �
Very little change, but the game feels quite different. Even more so if we replace the
TextController by one that can recognize key strokes in the display window, such as the
GUIController I give on the website. Have a look, although to be honest the GUI code is
somewhat clunky, and does not scale well. Nevertheless, it illustrates my point.

Finally, we can play interesting games with views. Here is a special view that multiplexes
updates to two sub-views:� �
public class DualView implements View {

private View view1;
private View view2;

protected DualView (View v1, View v2) {
view1 = v1;
view2 = v2;

}

public static DualView create (View v1, View v2) {
return new DualView(v1,v2);

}

public void attachToModel (Model m) {
view1.attachToModel(m);
view2.attachToModel(m);

}

public void update (Visible vis) {
view1.update(vis);
view2.update(vis);

}

public void win () {
view1.win();

14

view2.win();
}

}� �
With this, we can very quickly implement a version of the Maze game that both displays a
GUI window, and that gives a textual output of the player status, as follows:� �
public class MainDual {

public static void main (String[] argv) {

View v1 = GUIView.create();
View v2 = TextView.create();
View v = DualView.create(v1,v2);
Controller c = TextController.create();
Model m = BasicModel.create(v,c);

c.run();
}

}� �

15

