Object-Oriented Design

CS 3500 Fall 2009 (Pucella)

Lecture 15
Friday, Nov 6, 2009

15 Code Reuse: Inheritance and Delegation

Recall (a variant of) the Point ADT we talked about in lecture 7:

static Point create (int, int)

int xPos ()
int yPos ()

double distance (Point)

create(x,y) .xPos() = x
create(x,y).yPos() =y

create(x,y).distance(p) = Math.sqrt(Math.pow(x-p.xPos(),2)+
Math.pow(y-p.yPos(),2))

and its subclass, the CPoint ADT, where we’re using String to represent colors:

static CPoint create (int, int, String)

int xPos ()
int yPos ()

double distance (CPoint)

String color ()

create(x,y,c) .xPos()
create(x,y,c).yPos()

X
y

create(x,y) .distance(p) = Math.sqrt(Math.pow(x-p.xPos(),2)+
Math.pow(y-p.yPos(),2))

create(x,y,c).color() =

C

From lecture 7, we know that we can implement two classes defining the ADTs, and use

extends to indicate to Java that there is subclassing going on.

However, if you remember how we did it back then, there was a lot of code redundancy
between our Point and CPoint classes. Much of what CPoint did is the same thing that
Point did. In fact, much of the code in CPoint I just copy-pasted from the Point class.
That can be considered bad style. First, it is error prone: suppose we find a bug in the Point
class implementation, and correct it; it is quite easy to forget that we should also reflect the

fix in the CPoint class.




So Java makes a code reuse technique available to you: inheritance. Inheritance lets you
reuse implementation code. (Contrast to subclassing, which lets you reuse client code.) It is
not subclassing, but it is related. Unfortunately, Java conflates the two, which will force us
to jump through hoops at times.

Inheritance is incredibly powerful, and like any powerful tool, its power must be wielded
wisely. Inheritance basically lets us only write the “new” stuff when defining a subclass.
Everything else comes from the definition of the superclass. Here is an alternate definition
of the CPoint class using inheritance:

public class CPoint extends Point {
private String col;

private CPoint (int x, int y, String c) {
super (x,y) ;
col = c;

}

public static CPoint create (int x, int y, String c) {
return new CPoint(x,y,c);

}

public String color () { return this.col; }
}

This is much nicer.

e Note that we have invoked the superclass constructor in CPoint’s constructor using
super(x,y).

o We get to reuse the fields holding the position, and reuse the position selector methods.

Unfortunately, the above code fails miserably to compile.

What’s the problem? The problem is that we have made the constructor Point and the
fields xpos and ypos private in the Point class. By definition, a private method and private
fields are not accessible from outside the class in which they are defined. But the CPoint
class must invoke the Point constructor.

One solution would be to make the constructor public in Point, but that goes against our
philosophy, that everything which is not in the interface should be made private.

To get around this problem, Java introduces a new protection level, midway between private
and public: protected. Roughly, when a method or a field is qualified as protected, then the
method or the fields is not accessible from outside the class, except a subclass of the class.




Therefore, the complete code that works is as follows:

public class Point {
protected int xpos;
protected int ypos;

protected Point (int x, int y) {
Xpos = X;
ypos = y;

}

public static Point create (int x, int y) {
return new Point(x,y);

}

public int xPos () {
return this.xpos;

}

public int yPos (O {
return this.ypos;

¥

public double distance (Point p) {
return Math.sqrt(Math.pow(this.xPos()-p.xPos(),2)+
Math.pow(this.yPos()-p.yPos(),2));

public class CPoint extends Point {
private String col;

private CPoint (int x, int y, String c) {
super (x,y) ;
col = c;

3

public static CPoint make (int x, int y, String c) {
return new CPoint(x,y,c);

}




public String color () {
return this.col;
}
}

There are some general rules for what is accessible from an inheriting subclass, and what
is not. These are Java-specific, but every object-oriented language will have similar kind
of restrictions. Given an object A of a class T inheriting from S. The basic idea is that
object A has all the fields and methods of T', as well as all the public and protected fields
and methods of S.

e The constructor of T', when constructing A, will invoke the constructor of S, meaning
that the latter has to be protected or public. This invocation can be explicit by using
the syntax super(arg,, . ..,arg;); as the first line in the constructor body in 7. If no
such call is made, then the constructor of S is invoked automatically by the compiler,
with no arguments. (Meaning that S must implement a protected or public constructor
taking no arguments for this to compile.)

e Remember dynamic dispatch: Every time you invoke a method m on A, the method
code is looked up in the definition of 7', the actual class from which object A was
created. If there is no definition of m in 7', then method m is looked for in S, and it is
found only if it is protected or public. It is important that the first definition found is
executed. This lets you overwrite a definition of a method in a subclass. (This is what
happens for the canonical methods; the defaults are defined in class Object, but you
are welcome to overwrite them.) The overwriting defintion can invoke the superclass’s
method by invoking super.method(...).

e Fields are more complicated. An object of class T can refer to a field defined in S, as
long as that field is protected or public. Field shadowing—defining a field in a subclass
that is also defined in the superclass—is the field-equivalent of method overwriting,
except that the rules are much more painful to remember. Don’t shadow fields unless
you know what you are doing.!

There are some subtleties with how inheritance works in general, and in Java in particular.
We already saw the issues with method and field access, requiring the need for a protected
qualifier, and the difficulty with field shadowing. One issue with inheritance is that the
superclass needs to be set up so that it can be inherited from — in particular, methods and
fields need to be protected and not private. This is not always possible if you do not have
access to the source code of a library, for instance.n

!See http://articles.techrepublic.com.com/5100-22_11-5031837.html, for instance.




There is an alternative to inheritance, available even in languages that do not have inher-
itance. The idea is that instead of inheriting methods (and fields) from a superclass, we
shove away an instance of the superclass inside an object of the new class we are creating,
and delegate method execution to that object when appropriate. Here is an example, again
using the Point and CPoint ADT.

public class Point {
// needed for subclassing in Java
protected Point () {}

private int xPos;
private int yPos;

private Point (int x, int y) {
this.xPos
this.yPos

X;

Y

public static Point create (int x, int y) {
return new Point(x,y);

3

public int xPos () {
return this.xPos;

¥

public int yPos () {
return this.yPos;

¥

public double distance (Point p) {
return Math.sqrt(Math.pow(this.xPos()-p.xPos(),2)+
Math.pow(this.yPos()-p.yPos(),2));

public class CPoint extends Point {
// ’extends’ here really means subclassing, not inheritance

private Point sup; // delegate
private String color;




private CPoint (int x, int y, String c) {
this.sup = Point.create(x,y); // create the delegate
this.color = c;

public static CPoint create (int x, int y, String c) {
return new CPoint(x,y,c);

}

public int xPos () {
return this.sup.xPosQ);

¥

public int yPos () {
return this.sup.yPosQ);

3

public double distance (Point p) {
return this.sup.distance(p);

3

public String color () {
return this.color;

}

Note what is going on — we implement all methods in the subclass, except for many of these

methods, we delegate to the underlying point that we created in the constructor.

In the Point/CPoint example, inheritance and delegation do not make a big difference. Let’s
look at an example where there is a difference. Consider the List ADT from several lectures
ago, and let’s extend it. Suppose we really cared about keeping track of length of lists in
some application. A measurable list has the following interface, an extension of the List

ADT.

static MList empty ()

static MList cons (int, MList)
boolean isEmpty ()

int first ()

MList rest ()

int length ()



empty () .isEmpty () = true
cons(i,s).isEmpty() = false
cons(i,s).first() =

cons(i,s).rest() =
empty () .length() =

cons(i,s).length()

i

N o wn

1 + s.length()

The naive implementation of a length method by simply counting how many elements are
in the list can be inefficient if the list is large. There is no way to make the “count how
many elements are in the list” algorithm more efficient, but there is a way to implement
measurable list to make the length method more efficient: keep a count of the current list
size alongside the list content, and simply increment the count upon a cons. The length
method now simply returns the current list size, a constant-time field lookup operation. This
is an example of an augmented data structure, a data structure augmented with information
that make some operations more efficient.

It makes sense to want to implement measurable lists, which clearly should be a subclass
of lists, by inheriting from lists. The problem, if we use the implementation of lists derived
from the design pattern we have, is that there is nothing to inherit from in the List abstract
class! Yet, there is a lot of code that we would expect to be able to reuse. But inheritance
is not helpful here. Delegation is. Here is an implementation of MList using delegation to
reuse code from any list implementation:

public class MList extends List {
// ’extends’ ere really means subclassing, not inheritance

private List del; // delegate list
private int length;

private MList (int length, List del) {
this.length = length;
this.del = del;

public static MList empty () {
return new MList(0,List.empty());
}

public static MList cons (int v, MList 1) {
return new MList(1+1l.length(), List.cons(v,1));
}

public boolean isEmpty () {




return del.isEmpty();

public int first () {
return del.first();

3

public MList rest () {
return (MList) del.rest(); // cast needed because Java doesn’t
// know that del.rest() really
// gives you back an MList

public int length () {
return this.length;

3

It is all as you expect, except for the rest method. That method does nothing special in
the MList class — all the action is in the List class. But the types are not right. The rest
method should return an MList. But we know by construction that what gets stored in the
rest of the list when constructing an MList is a really a measurable list, even though it is
statically treated as a List. We lose information here, treating an MList as a List, which
we need to recover using a cast to “correct” the type of the returned value.

This is a limitation of Java, and a subtlety to be aware of, that it requires you to jump through
such hoops when delegating to or inheriting from classes that have a method returning an
object of the class itself.

The above implementation of MList relies on us knowing exactly what the relationship is
between lists and measurable lists, and also us knowing properties of the length operation,
and is somewhat ad hoc. Next lecture, we shall consider uniform ways of extending ADTs
implemented using the design pattern we have seen in class.




