Object-Oriented Design
CS 3500 Fall 2009 (Pucella)

Lecture 9

Friday, Oct 10, 2009

Subclassing from Multiple Classes, and Interfaces

Consider the following subclassing hierarchy:

Student

Person
/ \
\
Faculty

Corresponding to the ADTs:

PERSON:
public
public
public

STUDENT :
public
public
public
public

FACULTY:
public
public
public
public

The specifications for the above are the obvious ones, such as Person.create(n,id) . getName ()

static Person create (String, int);
String getName Q) ;
String getNUId ();

static Student create (String, int)
String getName Q) ;

String getNUId ();

void registerForCourse (String);

static Faculty create (String, int)
String getName ();

String getNUId ();

void offerCourse (String);

= n. Note that we cannot give an algebraic specification for registerForCourse and for
offerCourse, because they are really executed for their side-effects, and not for the value

they return.

Consider their implementation, again, in the most obvious way, and such that they respect
the desired subclassing hierarchy:

(public class Person {

private String name;
private String nuid;

// again, we’ll see this later
protected Person () { }

private Person (String n, String id) {
name = n;
nuid = id;

}

public static Person create (String n, String id) {
return new Person(n,id);

}

public String getName () { return this.name; }

public String getNUId () { return this.nuid; }

public class Student extends Person {
private String name;
private String nuid;

private Student (String n, String id) {
name = n;

nuid = id;

}

public static Student create (String n, String id) {
return new Student(n,id);

}

public String getName () { return this.name; }
public String getNUId () { return this.nuid; }

public void registerForClass (String class) { ...whatever... }

public class Faculty extends Person {
private String name;
private String nuid;

private Faculty (String n, String id) {
name = n;
nuid = id;

}

public static Faculty create (String n, String id) {
return new Faculty(n,id);

}

public String getName () { return this.name; }
public String getNUId () { return this.nuid; }

public void offerClass (String class) { ...whatever... }

}

No problem whatsoever here. (Although there is a lot of code repetition. We’ll see later how
to get rid of it, and at what price.)

What I want to consider now is a slightly more involved class hierarchy. Suppose that we
wanted to capture the fact that some of the persons in the hierarchy are salaried, that is, get
a stipend from the university. Persons with salaries have a method getSalary() that returns
the salary. We can capture this using a class Salaried, and a class subclasses Salaried
when the class represents persons that are salaried. Faculty are salaried, but students are
not. Just to make the example more interesting, suppose that we have a subclass of Student
called TA, which are in fact salaried, and therefore are also a subclass of Salaried. Then
this is the hierarchy we get:

Person
/ \
/ \
Student Salaried \
| / I |
l/ I I
TA Faculty

This class hierarchy is not a tree. Yet, it is a very natural example of a subclassing hierarchy—
it is a subclassing hierarchy we can well imagine occurring in practice.

There is no a priori reason why dag hierarchies are a problem. After all, subclassing is
just a relationship between classes that indicates, roughly, a subclass must implement all
the methods that a class makes available. (This ensures that when we pass a subclass to a
method expecting a class, we don’t run into problem invoking a method that is not defined.)
Clearly, we can have TA implement all the methods of Salaried and all the methods of
Student, and if we could just tell Java that TA is a subclass of both Salaried and Student,
everything would work nicely. So in a language with only subclassing, we could implement
the above class hierarchy by simply defining TA to “extend” both Salaried and Student.
Many languages let you do the above cleanly.

In Java, however, we have a problem. A class cannot extend more than a single class. (This is
because, as we shall see, Java conflates subclassing and inheritance—while subclassing from
multiple classes is not a problem, inheriting from multiple classes is a headache.) That sucks,
because as the Salaried example above was meant to illustrate, there are natural hierarchies
that are not tree shaped. And restricting you to subclassing hierarchies that are not tree
shaped limits what you can program naturally.

Fortunately, Java gives you a way out. You can actually subclass from multiple classes, but
all but at most one of them must be a fully abstract class. These fully abstract classes are
called interfaces.

An interface is defined as follows:

public interface Salaried {
public int getSalary ();

}

Note, once again: only method signatures, no actual method implementation. And while
I have annotated the methods as public, they cannot be but public. The annotation is
somewhat redundant. (I like redundancy; I like to be explicitly reminded that my interface
methods are public when I look at the code.)

To subclass from an interface, instead of using extends, we use implements. And as we
shall see, this is pure subclassing.

Returning to the Salaried example, here is an implementation of the above hierarchy.

public class Person {
private String name;
private String nuid;

protected Person () { }
private Person (String n, String id) {

name = n;
nuid = id;

}

public static Person create (String n, String id) {
return new Person(n,id);

}

public String getName () { return this.name; }

public String getNUId () { return this.nuid; }

public class Student extends Person {
private String name;
private String nuid;

protected Student () { }

private Student (String n, String id) {
name = n;
nuid = id;

}

public static Student create (String n, String id) {
return new Student(n,id);

}

public String getName () { return this.name; }
public String getNUId () { return this.nuid; }

public void registerForClass (String class) { ...whatever... }

public class TA extends Student implements Salaried {
private String name;
private String nuid;
private int salary;

private TA (String n, String id) {
name = n;

nuid = id;

}

public static TA create (String n, String id) {
return new TA(n,id);

}

public String getName () { return this.name; }
public String getNUId () { return this.nuid; }
public void registerForClass (String class) { ...whatever... }

public int getSalary () { return this.salary; }

public class Faculty extends Person implements Salaried {
private String name;
private String nuid;
private int salary;

private Faculty (String n, String id) {
name = n;
nuid = id;

}

public static Faculty create (String n, String id) {
return new Faculty(n,id);

}

public String getName () { return this.name; }
public String getNUId () { return this.nuid; }
public void offerClass (String class) { ...whatever... }

public int getSalary () { return this.salary; }

We can really think of an interface as a fully abstract class. This means, in particular, that
subclassing and hence subtyping works as expected. If we have an object a of type A and A

implements B, then we can consider a as an object of type B as well. In particular, we can
pass a to a method that expects a B, or store it in a variable of type B.

This is of course just subclassing, and therefore allows us to reuse client code. In particular,
it is possible to write a method that expects several objects of class Salaried, perhaps to
compute their average salary, and we can of course pass to it any object of any class that
implements Salaried.

