
Object-Oriented Design Lecture 6
CS 3500 Fall 2009 (Pucella) Tuesday, Sep 29, 2009

Errors and Exceptions

Consider the kind of errors that can occur in programs, generally speaking. There are various
errors possible, and it makes sense to classify them somehow.

(1) Errors in syntax. For instance, writing clas instead of class.

(2) Trying to apply an operation that works only on some type of values on vales of the
wrong type. For instance, trying add two Boolean values, or trying to divide strings.

(3) Trying to invoke a method m on an object that does not define such a method m, for
instance, if m is an instance of Map, trying to invoke m.playTune() is an error.

(4) Invoking an operation with arguments of the right types for which the operation is
undefined. For instance, dividing by 0, or taking the tangent of π/2.

(5) Casting an object to a class that it is not an instance of, e.g., without first checking
instanceof. (More about this later.)

(6) Problems out of a programmer’s control, such as hardware failures. For instance, disk
failures during disk IO, or network failure during network IO.

These distinctions are not sharply defined; some errors may well be classified in different
categories. But the categories are useful as a general sense of the kind of errors that arise.

Different languages check and deal with these errors differently. The first kind of errors,
syntax errors, are usually caught before a program is executed (and generally caught by
whatever programming interface you are using for your language).

The other kind of errors can be caught either before a program executes, when it is compiled
(we say that these errors are handled statically), or when a program executes (we say these
errors are handled dynamically). Take errors of the kind (2) or (3). When a language
checks for those kind of errors dynamically, we say that the language supports dynamic type
checking. Scheme supports dynamic type checking. Other languages actually can check for
type errors at compile time, that is, before programs execute. They support static type
checking. Java supports static type checking.

There are advantages to checking for errors at compile time; in particular, you still have a
chance to correct the problem while the code is in your hands. With dynamic type checking,

1

errors may only show up after the code has been shipped and the piece of software is in
the hands of the customer, making it more difficult and expensive to correct. Static error
checking also has some disadvantages. In particular, there is no way to identify exactly
all those programs that have errors at compile time.1 Thus, the error checker needs to
approximate, and it will approximate conservatively. Thus, there are programs that would
not cause problems during execution that the error checker will reject.

Java takes care of type errors, errors of type (2) above, at compile time. It also takes care
of errors of type (3) at compile-time. The other kind of errors, however, cannot be reliably
checked for at compile time. (Here again, the limitation in the footnote above bites us
here.) Every language will have a different way to report those kind of errors. Generally, the
error will abort execution and report a useful error message on the console. But in many
languages, Java included, these errors can be dealt with within the program itself, and the
execution need not actually abort. In other words, these errors can often be recovered from
gracefully.

The modern approach to dealing with runtime errors, those not taken care of at compile-time,
is to use exceptions. An exception is just an object in the system, that gets created when
an error is encountered, and that propagates through the code until either it is handled, or
aborts execution.

There is actually a whole hierarchy of classes in Java implementing exceptions. This hierarchy
lets us distinguish the kind of exceptions that can occur. Here is a partial class hierarchy of
exceptions:

Throwable

|

+-- Error

| |

| +-- OutOfMemoryError

| +-- AssertionError

|

+-- Exception

|

+-- IOException

+-- InterruptedException

+-- RuntimeException

|

+-- ArithmeticException

+-- ClassCastException

1This is a deep limitation in what we can say about programs in general, which you will see in a good
theory of computation course. It is a consequence of the so-called undecidability of the halting problem for
Turing machines. Very roughly speaking, the limitation is that it is impossible to write a program that takes
a program P as input and (without executing the program) answers correctly a question about how P will
execute.

2

+-- NullPointerException

+-- IllegalArgumentException

+-- NumberFormatException

The class Throwable is the most general kind of exception that every other exception
subclasses. The Error class roughly represent the show-stoppers, that lead to aborting
execution in almost all cases. The Exception class capture more “benign” forms of er-
rors. These include IOExceptions, representing exceptions due to failure of IO (disk fail-
ure, network failure, and so on), while RuntimeExceptions represent exceptions such as
dividing by 0 (an ArithmeticException), casting an object to an unacceptable class (a
ClassCastException), invoking a method on a null object (a NullPointerException).
The IllegalArgumentException is a general exception to represent passing a wrong value
to a method.

(Note that you can also create new kinds of exceptions by subclassing, generally by subclass-
ing the Exception class. We’ll see subclassing more extensively in the coming weeks.)

Many exceptions are created automatically by the system when an error is encountered. You
can also cause an exception yourself in the code. This is called throwing an exception:

throw new IllegalArgumentException ("Oops, something bad happened");

To a first approximation, throwing an exception aborts execution of the program.

Here is a simple, possibly naive, but still accurate model that explains how exceptions
affect code execution. Intuitively, you can think of the following two rules that apply to all
programs:

(1) Every method returns either a value as specified by its signature, or an exception. The
statement return returns a value from the method, while the statement throw returns
an exception from the method.

(2) Every method call is implicitly wrapped by code that checks if the method called
returned an exception—if so, it returns the exception immediately, using a throw,
otherwise it just continues execution with the value returned by the method.

In this way, exceptions propagate all the way back to the main method. If the main method
returns an exception, then that exception is reported to the user.

In fact, the fact that exceptions can be returned from methods sometimes has to appear
in the signature. Java distinguishes between checked and unchecked exceptions. Unchecked
exceptions (including Errors and RuntimeExceptions) are exceptions that can occur essen-
tially at any point during execution. Checked exceptions (including IOExceptions) and all
exceptions that you will create) are exceptions that can occur only when specific methods
throw them. You are required to annotate every method that can throw a checked exception,
either because it can throw it directly, or because it invokes a method that can throw that
exception.

3

public void someMethod () throws SomeException {

// some code that can throw the SomeException exception

}

This is all good and well, but how can we deal with such exceptions gracefully? After all, if
exceptions were just errors that cannot be dealt with, we could just say that an exception
aborts execution, and be done with it. The idea is that if a method call appear in the
body of a try block, and if that call returns an exception, that exception is not returned
immediately, but instead it is handled catch clause associated with the try block.

Suppose MyException is a new exception you have defined, subclassing Exception, and
suppose you wanted to intercept this exception if it is thrown by the method someMethod()

on object obj:

try {

obj.someMethod();

} catch (MyException e) {

// some code to deal with the exception

}

This reads: if a MyException is returned by obj.someMethod(), then instead of having
that exception returned immediately, intercept it, name it e, and continue execution of the
current method with the code in the catch clause. (The reason why we may be interested in
e is that e is an object that actually implements some useful methods such as getMessage()
which returns a string representing the message associated with the exception.) This lets
you gracefull recover from an exception, by intercepting it and dealing with it instead of
letting it bubble up until it aborts the entire program with an error.

Note that a catch clause catching an exception SomeException will in fact catch all ex-
ceptions that are instances of subclasses of SomeException. This lets you intercept, for
instance, any possible exception in a single catch clause:

try {

// some code doing something interesting

} catch (Throwable e) {

// deal with the exception

}

This works because every exception ultimately subclasses Throwable. This kind of code is
useful in testing code to nicely format the exception and report useful information.

It is also possible to catch multiple exceptions and dealing with them differently:

try {

4

// some code doing something interesting

} catch (SomeExceptionClass e) {

// deal with this kind of exception

} catch (SomeOtherExceptionClass e) {

// deal with this other kind of exception

}

Note that the order in which the catch clauses occur is relevant—they are tried in order,
and the first clause where the current exception is in a subclass of the specified exception
will be chosen.

5

